Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107714, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37701573

RESUMEN

Lamin A/C is a well-established key contributor to nuclear stiffness and its role in nucleus mechanical properties has been extensively studied. However, its impact on whole-cell mechanics has been poorly addressed, particularly concerning measurable physical parameters. In this study, we combined microfluidic experiments with theoretical analyses to quantitatively estimate the whole-cell mechanical properties. This allowed us to characterize the mechanical changes induced in cells by lamin A/C alterations and prelamin A accumulation resulting from atazanavir treatment or lipodystrophy-associated LMNA R482W pathogenic variant. Our results reveal a distinctive increase in long-time viscosity as a signature of cells affected by lamin A/C alterations. Furthermore, they show that the whole-cell response to mechanical stress is driven not only by the nucleus but also by the nucleo-cytoskeleton links and the microtubule network. The enhanced cell viscosity assessed with our microfluidic assay could serve as a valuable diagnosis marker for lamin-related diseases.

2.
J Phys Chem B ; 120(25): 5759-66, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27267312

RESUMEN

An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed.

3.
Phys Rev Lett ; 113(12): 128305, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25279650

RESUMEN

This Letter reports on the remarkable selectivity of capsid proteins for packaging synthetic polyelectrolytes in viruslike particles. By applying the contrast variation method in small-angle neutron scattering, we accurately estimated the mean mass of packaged polyelectrolytes ⟨Mp⟩ and that of the surrounding capsid ⟨Mcap⟩. Remarkably, the mass ratio ⟨Mp⟩/⟨Mcap⟩ was invariant for polyelectrolyte molecular weights spanning more than 2 orders of magnitude. To do so, capsids either packaged several chains simultaneously or selectively retained the shortest chains that could fit the capsid interior. Our data are in qualitative agreement with theoretical predictions based on free energy minimization and emphasize the importance of protein self-energy. These findings may give new insights into the nonspecific origin of genome selectivity for a number of viral systems.


Asunto(s)
Proteínas de la Cápside/química , Electrólitos/química , Virión/química , Cápside/química , Modelos Químicos , Modelos Moleculares , Difracción de Neutrones , ARN Viral/química , Dispersión del Ángulo Pequeño
4.
J Phys Chem B ; 115(39): 11318-29, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21863843

RESUMEN

The micellar state of Pluronic P123, which is a poly(ethylene oxide)-b-poly(propylene oxide)-b- poly(ethylene oxide) block polymer (EO(20)PO(70)EO(20)), has been investigated using SANS, SAXS, and differential scanning calorimetry under the conditions utilized in the synthesis of ordered mesoporous materials, such as SBA-15. The absolute intensity measurements, both with SANS and SAXS, have provided a detailed quantitative description of the P123 micelles in the framework of a simple core-shell spherical model. The model developed has been used to establish the structure of the copolymer micelles, including their size, shape, aggregation number and detailed composition, as well as the structural changes induced by varying reaction conditions. The effects of temperature, pH, acidic source and the addition of swelling agents (toluene and TMB) are reported and discussed.


Asunto(s)
Micelas , Difracción de Neutrones , Poloxaleno/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rastreo Diferencial de Calorimetría , Modelos Teóricos , Polietilenglicoles/química , Porosidad , Glicoles de Propileno/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...