Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445159

RESUMEN

Polyetheretherketone (PEEK), due to its excellent mechanical and physico-chemical parameters, is an attractive substitute for hard tissues in orthopedic applications. However, PEEK is hydrophobic and lacks surface-active functional groups promoting cell adhesion. Therefore, the PEEK surface must be modified in order to improve its cytocompatibility. In this work, extreme ultraviolet (EUV) radiation and two low-temperature, EUV induced, oxygen and nitrogen plasmas were used for surface modification of polyetheretherketone. Polymer samples were irradiated with 100, 150, and 200 pulses at a 10 Hz repetition rate. The physical and chemical properties of EUV and plasma modified PEEK surfaces, such as changes of the surface topography, chemical composition, and wettability, were examined using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and goniometry. The human osteoblast-like MG63 cells were used for the analysis of cell viability and cell adhesion on all modified PEEK surfaces. EUV radiation and two types of plasma treatment led to significant changes in surface topography of PEEK, increasing surface roughness and formation of conical structures. Additionally, significant changes in the chemical composition were found and were manifested with the appearance of new functional groups, incorporation of nitrogen atoms up to ~12.3 at.% (when modified in the presence of nitrogen), and doubling the oxygen content up to ~25.7 at.% (when modified in the presence of oxygen), compared to non-modified PEEK. All chemically and physically changed surfaces demonstrated cyto-compatible and non-cytotoxic properties, an enhancement of MG63 cell adhesion was also observed.


Asunto(s)
Benzofenonas/química , Materiales Biocompatibles/química , Nitrógeno/química , Osteoblastos/citología , Oxígeno/química , Gases em Plasma/química , Polímeros/química , Adhesión Celular , Línea Celular , Humanos , Propiedades de Superficie , Rayos Ultravioleta
2.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353050

RESUMEN

Recently, extreme ultraviolet (EUV) radiation has been increasingly used to modify polymers. Properties such as the extremely short absorption lengths in polymers and the very strong interaction of EUV photons with materials may play a key role in achieving new biomaterials. The purpose of the study was to examine the impact of EUV radiation on cell adhesion to the surface of modified polymers that are widely used in medicine: poly(tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and poly-L-(lactic acid) (PLLA). After EUV surface modification, which has been performed using a home-made laboratory system, changes in surface wettability, morphology, chemical composition and cell adhesion polymers were analyzed. For each of the three polymers, the EUV radiation differently effects the process of endothelial cell adhesion, dependent of the parameters applied in the modification process. In the case of PVDF and PTFE, higher cell number and cellular coverage were obtained after EUV radiation with oxygen. In the case of PLLA, better results were obtained for EUV modification with nitrogen. For all three polymers tested, significant improvements in endothelial cell adhesion after EUV modification have been demonstrated.


Asunto(s)
Adhesión Celular , Células Endoteliales/fisiología , Microvasos/fisiología , Poliésteres/farmacología , Politetrafluoroetileno/farmacología , Polivinilos/farmacología , Rayos Ultravioleta , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Microvasos/efectos de los fármacos , Poliésteres/química , Poliésteres/efectos de la radiación , Politetrafluoroetileno/química , Politetrafluoroetileno/efectos de la radiación , Polivinilos/química , Polivinilos/efectos de la radiación , Propiedades de Superficie , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA