Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(9): e3002284, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708127

RESUMEN

During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.


Asunto(s)
Caenorhabditis elegans , Agregado de Proteínas , Animales , Envejecimiento , Complejo de la Endopetidasa Proteasomal , Proteostasis
2.
Elife ; 82019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31050339

RESUMEN

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.


Asunto(s)
Envejecimiento , Amiloide/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Agregado de Proteínas , Animales
3.
J Vis Exp ; (129)2017 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-29286457

RESUMEN

In the last decades, the prevalence of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), has grown. These age-associated disorders are characterized by the appearance of protein aggregates with fibrillary structure in the brains of these patients. Exactly why normally soluble proteins undergo an aggregation process remains poorly understood. The discovery that protein aggregation is not limited to disease processes and instead part of the normal aging process enables the study of the molecular and cellular mechanisms that regulate protein aggregation, without using ectopically expressed human disease-associated proteins. Here we describe methodologies to examine inherent protein aggregation in Caenorhabditis elegans through complementary approaches. First, we examine how to grow large numbers of age-synchronized C. elegans to obtain aged animals and we present the biochemical procedures to isolate highly-insoluble-large aggregates. In combination with a targeted genetic knockdown, it is possible to dissect the role of a gene of interest in promoting or preventing age-dependent protein aggregation by using either a comprehensive analysis with quantitative mass spectrometry or a candidate-based analysis with antibodies. These findings are then confirmed by in vivo analysis with transgenic animals expressing fluorescent-tagged aggregation-prone proteins. These methods should help clarify why certain proteins are prone to aggregate with age and ultimately how to keep these proteins fully functional.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Edad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Modelos Animales , Agregado de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Prion ; 11(5): 313-322, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28956717

RESUMEN

Low complexity (LC) prion-like domains are over-represented among RNA-binding proteins (RBPs) and contribute to the dynamic nature of RNA granules. Importantly, several neurodegenerative diseases are characterized by cytoplasmic "solid" aggregates formed by mainly nuclear RBPs harboring LC prion-like domains. Although RBP aggregation in disease has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics. Our recent study revealed that RNA granule components including 2 key stress granule RBPs with LC prion-like domains, PAB-1 and TIAR-2, aggregate in aged Caenorhabditis elegans in the absence of disease. Here we present new evidence showing that sustained stress granule formation triggers RBP aggregation. In addition, we demonstrate that mild chronic stress during aging promotes mislocalization of nuclear RBPs. We discuss the consequences of aberrant interactions between age-related RBP aggregation and disease-associated RBP aggregation. In particular, we show that FUST-1 and PAB-1 co-localize in aberrant cytoplasmic accumulations. Significantly, long-lived animals with reduced insulin/IGF-1 signaling abrogate stress granule RBP aggregation through activation of the transcription factors HSF-1 and DAF-16. We evaluate the different mechanisms that could maintain dynamic stress granules. Together these findings highlight how changes with age could contribute to pathogenesis in neurodegenerative diseases and disruption of RNA homeostasis.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Priones/metabolismo , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico , Animales , Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Longevidad , Enfermedades Neurodegenerativas/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteoma/química , ARN/metabolismo , Factores de Transcripción/metabolismo
5.
Genome Biol ; 18(1): 22, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28137300

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.


Asunto(s)
Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedad de Parkinson/genética , Análisis de Secuencia de ADN/métodos , alfa-Sinucleína/genética , Adolescente , Adulto , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Estudios de Casos y Controles , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Exoma , Humanos , Persona de Mediana Edad , Interferencia de ARN , Adulto Joven
6.
Cell Rep ; 18(2): 454-467, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076789

RESUMEN

Low-complexity "prion-like" domains in key RNA-binding proteins (RBPs) mediate the reversible assembly of RNA granules. Individual RBPs harboring these domains have been linked to specific neurodegenerative diseases. Although their aggregation in neurodegeneration has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics. We show that a wide variety of RNA granule components, including stress granule proteins, become highly insoluble with age in C. elegans and that reduced insulin/insulin-like growth factor 1 (IGF-1) daf-2 receptor signaling efficiently prevents their aggregation. Importantly, stress-granule-related RBP aggregates are associated with reduced fitness. We show that heat shock transcription factor 1 (HSF-1) is a main regulator of stress-granule-related RBP aggregation in both young and aged animals. During aging, increasing DAF-16 activity restores dynamic stress-granule-related RBPs, partly by decreasing the buildup of other misfolded proteins that seed RBP aggregation. Longevity-associated mechanisms found to maintain dynamic RBPs during aging could be relevant for neurodegenerative diseases.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Choque Térmico/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal , Animales , Longevidad , Mutación/genética , Agregado de Proteínas , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptor de Insulina/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...