Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456220

RESUMEN

Studies in plants were often pioneering in the field of RNA silencing and revealed a broad range of small RNA (sRNA) categories. When associated with ARGONAUTE (AGO) proteins, sRNAs play important functions in development, genome integrity, stress responses, and antiviral immunity. Today, most of the protein factors required for the biogenesis of sRNA classes, their amplification through the production of double-stranded RNA, and their function in transcriptional and post-transcriptional regulation have been identified. Nevertheless, and despite the importance of RNA silencing, we still know very little about their post-translational regulation. This is in stark contrast with studies in metazoans, where different modifications such as prolyl hydroxylation, phosphorylation, sumoylation, ubiquitylation, and others have been reported to alter the activity and stability of key factors, such as AGO proteins. Here, we review current knowledge of how key components of the RNA silencing machinery in plants are regulated during development and by microbial hijacking of endogenous proteases.

2.
iScience ; 27(3): 109151, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384836

RESUMEN

In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules. AGO1 contains a prion-like domain in its poorly characterized N-terminal Poly-Q domain, which is sufficient to undergo phase separation independently of the presence of SGS3. HS only moderately affects the small RNA repertoire, the loading of AGO1 by miRNAs, and the signatures of target cleavage, suggesting that its localization in condensates protects AGO1 rather than promoting or impairing its activity in reprogramming gene expression during stress. Collectively, our work sheds new light on the impact of high temperature on a main effector of RNA silencing in plants.

3.
Cell Rep ; 39(2): 110671, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417704

RESUMEN

RNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated. Although FBW2 loss of function does not lead to strong growth or developmental defects, it significantly increases RNA-silencing activity. Interestingly, under conditions in which small-RNA accumulation is affected, the failure to degrade AGO1 in fbw2 mutants becomes more deleterious for the plant. Accordingly, the non-degradable AGO1 protein assembles high-molecular-weight complexes and binds illegitimate small RNA, leading to off-target cleavage. Therefore, control of AGO1 homeostasis by FBW2 plays an important role in quality control of RNA silencing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Proteínas F-Box , MicroARNs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroARNs/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
4.
Nucleic Acids Res ; 49(19): 11274-11293, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614168

RESUMEN

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Interacciones Huésped-Patógeno/genética , Luteoviridae/genética , Enfermedades de las Plantas/genética , Ribonucleasa III/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/virología , Proteínas de Arabidopsis/inmunología , Proteínas Argonautas/inmunología , Proteínas de Ciclo Celular/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica , Genes Supresores , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Luteoviridae/crecimiento & desarrollo , Luteoviridae/metabolismo , Floema/genética , Floema/inmunología , Floema/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Interferencia de ARN , Ribonucleasa III/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Virales/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(11): 6205-6215, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123086

RESUMEN

The jasmonate (JA)-pathway regulators MYC2, MYC3, and MYC4 are central nodes in plant signaling networks integrating environmental and developmental signals to fine-tune JA defenses and plant growth. Continuous activation of MYC activity is potentially lethal. Hence, MYCs need to be tightly regulated in order to optimize plant fitness. Among the increasing number of mechanisms regulating MYC activity, protein stability is arising as a major player. However, how the levels of MYC proteins are modulated is still poorly understood. Here, we report that MYC2, MYC3, and MYC4 are targets of BPM (BTB/POZ-MATH) proteins, which act as substrate adaptors of CUL3-based E3 ubiquitin ligases. Reduction of function of CUL3BPM in amiR-bpm lines, bpm235 triple mutants, and cul3ab double mutants enhances MYC2 and MYC3 stability and accumulation and potentiates plant responses to JA such as root-growth inhibition and MYC-regulated gene expression. Moreover, MYC3 polyubiquitination levels are reduced in amiR-bpm lines. BPM3 protein is stabilized by JA, suggesting a negative feedback regulatory mechanism to control MYC activity, avoiding harmful runaway responses. Our results uncover a layer for JA-pathway regulation by CUL3BPM-mediated degradation of MYC transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Cullin/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Cullin/genética , Retroalimentación Fisiológica , Mutación , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Ubiquitinación/fisiología
6.
Plant Mol Biol ; 102(4-5): 359-372, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31848919

RESUMEN

KEY MESSAGE: Protein degradation is essential in plant growth and development. The stability of Cullin3 substrate adaptor protein BPM1 is regulated by multiple environmental cues pointing on manifold control of targeted protein degradation. A small family of six MATH-BTB genes (BPM1-6) is described in Arabidopsis thaliana. BPM proteins are part of the Cullin E3 ubiquitin ligase complexes and are known to bind at least three families of transcription factors: ERF/AP2 class I, homeobox-leucine zipper and R2R3 MYB. By targeting these transcription factors for ubiquitination and subsequent proteasomal degradation, BPMs play an important role in plant flowering, seed development and abiotic stress response. In this study, we generated BPM1-overexpressing plants that showed an early flowering phenotype, resistance to abscisic acid and tolerance to osmotic stress. We analyzed BPM1-GFP protein stability and found that the protein has a high turnover rate and is degraded by the proteasome 26S in a Cullin-dependent manner. Finally, we found that BPM1 protein stability is environmentally conditioned. Darkness and salt stress triggered BPM1 degradation, whereas elevated temperature enhanced BPM1 stability and accumulation in planta.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/fisiología , Estrés Fisiológico , Factores de Transcripción/fisiología , Ácido Abscísico , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Plásmidos/genética , Polen/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteolisis , Semillas/fisiología , Ubiquitina-Proteína Ligasas/fisiología
7.
Proc Natl Acad Sci U S A ; 116(45): 22872-22883, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31628252

RESUMEN

RNA silencing is a major antiviral defense mechanism in plants and invertebrates. Plant ARGONAUTE1 (AGO1) is pivotal in RNA silencing, and hence is a major target for counteracting viral suppressors of RNA-silencing proteins (VSRs). P0 from Turnip yellows virus (TuYV) is a VSR that was previously shown to trigger AGO1 degradation via an autophagy-like process. However, the identity of host proteins involved and the cellular site at which AGO1 and P0 interact were unknown. Here we report that P0 and AGO1 associate on the endoplasmic reticulum (ER), resulting in their loading into ER-associated vesicles that are mobilized to the vacuole in an ATG5- and ATG7-dependent manner. We further identified ATG8-Interacting proteins 1 and 2 (ATI1 and ATI2) as proteins that associate with P0 and interact with AGO1 on the ER up to the vacuole. Notably, ATI1 and ATI2 belong to an endogenous degradation pathway of ER-associated AGO1 that is significantly induced following P0 expression. Accordingly, ATI1 and ATI2 deficiency causes a significant increase in posttranscriptional gene silencing (PTGS) activity. Collectively, we identify ATI1 and ATI2 as components of an ER-associated AGO1 turnover and proper PTGS maintenance and further show how the VSR P0 manipulates this pathway.


Asunto(s)
Proteínas Argonautas/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Virales/metabolismo , Proteolisis , Vacuolas/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(31): 15725-15734, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308219

RESUMEN

Early abscisic acid signaling involves degradation of clade A protein phosphatases type 2C (PP2Cs) as a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. At later steps, ABA induces up-regulation of PP2C transcripts and protein levels as a negative feedback mechanism. Therefore, resetting of ABA signaling also requires PP2C degradation to avoid excessive ABA-induced accumulation of PP2Cs. It has been demonstrated that ABA induces the degradation of existing ABI1 and PP2CA through the PUB12/13 and RGLG1/5 E3 ligases, respectively. However, other unidentified E3 ligases are predicted to regulate protein stability of clade A PP2Cs as well. In this work, we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the multimeric cullin3 (CUL3)-RING-based E3 ligases (CRL3s), as PP2CA-interacting proteins. BPM3 and BPM5 interact in the nucleus with PP2CA as well as with ABI1, ABI2, and HAB1. BPM3 and BPM5 accelerate the turnover of PP2Cs in an ABA-dependent manner and their overexpression leads to enhanced ABA sensitivity, whereas bpm3 bpm5 plants show increased accumulation of PP2CA, ABI1 and HAB1, which leads to global diminished ABA sensitivity. Using biochemical and genetic assays, we demonstrated that ubiquitination of PP2CA depends on BPM function. Given the formation of receptor-ABA-phosphatase ternary complexes is markedly affected by the abundance of protein components and ABA concentration, we reveal that BPMs and multimeric CRL3 E3 ligases are important modulators of PP2C coreceptor levels to regulate early ABA signaling as well as the later desensitizing-resetting steps.


Asunto(s)
Ácido Abscísico/farmacocinética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cullin/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteolisis , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cullin/genética , Fosfoproteínas Fosfatasas/genética
10.
Nat Commun ; 4: 2496, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24051655

RESUMEN

Auxin is a major plant hormone that controls most aspects of plant growth and development. Auxin is perceived by two distinct classes of receptors: transport inhibitor response 1 (TIR1, or auxin-related F-box (AFB)) and auxin/indole-3-acetic acid (AUX/IAA) coreceptors, that control transcriptional responses to auxin, and the auxin-binding protein 1 (ABP1), that controls a wide variety of growth and developmental processes. To date, the mode of action of ABP1 is still poorly understood and its functional interaction with TIR1/AFB-AUX/IAA coreceptors remains elusive. Here we combine genetic and biochemical approaches to gain insight into the integration of these two pathways. We find that ABP1 is genetically upstream of TIR1/AFBs; ABP1 knockdown leads to an enhanced degradation of AUX/IAA repressors, independently of its effects on endocytosis, through the SCF(TIR1/AFB) E3 ubiquitin ligase pathway. Combining positive and negative regulation of SCF ubiquitin-dependent pathways might be a common mechanism conferring tight control of hormone-mediated responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo , Estabilidad Proteica , Proteolisis , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Transcripción Genética
11.
EMBO J ; 32(17): 2307-20, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23912815

RESUMEN

Protein ubiquitylation is a post-translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN-RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F-box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Cullin/química , Proteínas Cullin/genética , Humanos , Enfermedades Metabólicas/enzimología , Neoplasias/enzimología , Degeneración Nerviosa/enzimología , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transporte de Proteínas , Transducción de Señal/genética , Estrés Fisiológico/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
12.
Plant Cell ; 23(10): 3627-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21990941

RESUMEN

Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3). Under low-intensity BL, CRL3(NPH3) mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3(NPH3), with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fototransducción/fisiología , Fototropismo/fisiología , Ubiquitinación/fisiología , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Chlorocebus aethiops , Proteínas Cullin , Ácidos Indolacéticos/metabolismo , Lepidópteros , Luz , Fototransducción/efectos de la radiación , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Fototropismo/efectos de la radiación , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas , Proteolisis , Plantones/citología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Nicotiana/genética , Nicotiana/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de la radiación
13.
EMBO J ; 30(4): 731-43, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21240189

RESUMEN

Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Impresión Genómica/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Cullin/genética , Proteínas Cullin/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica de las Plantas , Impresión Genómica/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Plantas Modificadas Genéticamente , Unión Proteica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Homología de Secuencia de Aminoácido , Ubiquitinación/fisiología
14.
Proc Natl Acad Sci U S A ; 107(34): 15275-80, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696906

RESUMEN

One of the predominant cell-cycle programs found in mature tissues is endoreplication, also known as endoreduplication, that leads to cellular polyploidy. A key question for the understanding of endoreplication cycles is how oscillating levels of cyclin-dependent kinase activity are generated that control repeated rounds of DNA replication. The APC/C performs a pivotal function in the mitotic cell cycle by promoting anaphase and paving the road for a new round of DNA replication. However, using marker lines and plants in which APC/C components are knocked down, we show here that outgrowing and endoreplicating Arabidopsis leaf hairs display no or very little APC/C activity. Instead we find that RBX1-containing Cullin-RING E3 ubiquitin-Ligases (CRLs) are of central importance for the progression through endoreplication cycles; in particular, we have identified CULLIN4 as a major regulator of endoreplication in Arabidopsis trichomes. We have incorporated our findings into a bio-mathematical simulation presenting a robust two-step model of endoreplication control with one type of cyclin-dependent kinase inhibitor function for entry and a CRL-dependent oscillation of cyclin-dependent kinase activity via degradation of a second type of CDK inhibitor during endoreplication cycles.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas Cullin/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas Cullin/genética , Replicación del ADN , ADN de Plantas/biosíntesis , ADN de Plantas/genética , Genes de Plantas , Microscopía Electrónica de Rastreo , Modelos Biológicos , Mutación , Estructuras de las Plantas/ultraestructura , Plantas Modificadas Genéticamente , Poliploidía , Interferencia de ARN
15.
J Biol Chem ; 284(12): 7920-30, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19147500

RESUMEN

Ubiquitination and proteasome-mediated degradation of proteins are crucial for eukaryotic physiology and development. The largest class of E3 ubiquitin ligases is made up of the cullin-RING ligases (CRLs), which themselves are positively regulated through conjugation of the ubiquitin-like peptide RUB/NEDD8 to cullins. RUB modification is antagonized by the COP9 signalosome (CSN), an evolutionarily conserved eight-subunit complex that is essential in most eukaryotes and cleaves RUB from cullins. The CSN behaves genetically as an activator of CRLs, although it abolishes CRL activity in vitro. This apparent paradox was recently reconciled in different organisms, as the CSN was shown to prevent autocatalytic degradation of several CRL substrate adaptors. We tested for such a mechanism in the model plant Arabidopsis by measuring the impact of a newly identified viable csn2 mutant on the activity and stability of SCF(TIR1), a receptor to the phytohormone auxin and probably the best characterized plant CRL. Our analysis reveals that not only the F-box protein TIR1 but also relevant cullins are destabilized in csn2 and other Arabidopsis csn mutants. These results provide an explanation for the auxin resistance of csn mutants. We further observed in vivo a post-translational modification of TIR1 dependent on the proteasome inhibitor MG-132 and provide evidence for proteasome-mediated degradation of TIR1, CUL1, and ASK1 (Arabidopsis SKP1 homolog). These results are consistent with CSN-dependent protection of Arabidopsis CRLs from autocatalytic degradation, as observed in other eukaryotes, and provide evidence for antagonist roles of the CSN and 26S proteasome in modulating accumulation of the plant CRL SCF(TIR1).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Receptores de Superficie Celular/metabolismo , Ubiquitinación/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9 , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas F-Box/genética , Ácidos Indolacéticos/metabolismo , Leupeptinas/farmacología , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Receptores de Superficie Celular/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinas/genética , Ubiquitinas/metabolismo
16.
PLoS Genet ; 5(1): e1000328, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19132085

RESUMEN

CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells.


Asunto(s)
Arabidopsis/genética , Proteínas Portadoras/fisiología , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Línea Celular , Cotiledón/crecimiento & desarrollo , Proteínas Cullin , Liasas/genética , Liasas/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética
17.
PLoS Genet ; 4(6): e1000093, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18551167

RESUMEN

Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma de Planta/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/análisis , Proteínas Cullin/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutagénesis Insercional , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Tolerancia a Radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant Cell ; 18(11): 3047-57, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17085683

RESUMEN

EXORIBONUCLEASE4 (XRN4), the Arabidopsis thaliana homolog of yeast XRN1, is involved in the degradation of several unstable mRNAs. Although a role for XRN4 in RNA silencing of certain transgenes has been reported, xrn4 mutant plants were found to lack any apparent visible phenotype. Here, we show that XRN4 is allelic to the unidentified components of the ethylene response pathway ETHYLENE-INSENSITIVE5/ACC-INSENSITIVE1 (EIN5/AIN1) and EIN7. xrn4 mutant seedlings are ethylene-insensitive as a consequence of the upregulation of EIN3 BINDING F-BOX PROTEIN1 (EBF1) and EBF2 mRNA levels, which encode related F-box proteins involved in the turnover of EIN3 protein, a crucial transcriptional regulator of the ethylene response pathway. Epistasis analysis placed XRN4/EIN5/AIN1 downstream of CTR1 and upstream of EBF1/2. XRN4 does not appear to regulate ethylene signaling via an RNA-INDUCED SILENCING COMPLEX-based RNA silencing mechanism but acts by independent means. The identification of XRN4 as an integral new component in ethylene signaling adds RNA degradation as another posttranscriptional process that modulates the perception of this plant hormone.


Asunto(s)
Arabidopsis/enzimología , Etilenos/metabolismo , Exorribonucleasas/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Etilenos/farmacología , Exorribonucleasas/genética , Proteínas F-Box/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Cinética , MicroARNs/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 103(39): 14620-5, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16983093

RESUMEN

The phytopathogenic bacterium Ralstonia solanacearum encodes a family of seven type III secretion system (T3SS) effectors that contain both a leucine-rich repeat and an F-box domain. This structure is reminiscent of a class of typical eukaryotic proteins called F-box proteins. The latter, together with Skp1 and Cullin1 subunits, constitute the SCF-type E3 ubiquitin ligase complex and control specific protein ubiquitinylation. In the eukaryotic cell, depending on the nature of the polyubiquitin chain, the ubiquitin-tagged proteins either see their properties modified or are doomed for degradation by the 26S proteasome. This pathway is essential to many developmental processes in plants, ranging from hormone signaling and flower development to stress responses. Here, we show that these previously undescribed T3SS effectors are putative bacterial F-box proteins capable of interacting with a subset of the 19 different Arabidopsis Skp1-like proteins like bona fide Arabidopsis F-box proteins. A R. solanacearum strain in which all of the seven GALA effector genes have been deleted or mutated was no longer pathogenic on Arabidopsis and less virulent on tomato. Furthermore, we found that GALA7 is a host-specificity factor, required for disease on Medicago truncatula plants. Our results indicate that the GALA T3SS effectors are essential to R. solanacearum to control disease. Because the F-box domain is essential to the virulence function of GALA7, we hypothesize that these effectors act by hijacking their host SCF-type E3 ubiquitin ligases to interfere with their host ubiquitin/proteasome pathway to promote disease.


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas F-Box/metabolismo , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/microbiología , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas F-Box/química , Proteínas F-Box/genética , Genes Bacterianos/genética , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Virulencia
20.
Curr Opin Plant Biol ; 9(6): 631-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17005440

RESUMEN

The ubiquitin proteasome system is a key regulator of many biological processes in all eukaryotes. This mechanism employs several types of enzymes, the most important of which are the ubiquitin E3 ligases that catalyse the attachment of polyubiquitin chains to target proteins for their subsequent degradation by the 26S proteasome. Among the E3 families, the SCF is the best understood; it consists of a multi-protein complex in which the F-box protein plays a crucial role by recruiting the target substrate. Strikingly, nearly 700 F-box proteins have been predicted in Arabidopsis, suggesting that plants have the capacity to assemble a multitude of SCF complexes, possibly controlling the stability of hundreds of substrates involved in a plethora of biological processes. Interestingly, viruses and even pathogenic bacteria have also found ways to hijack the plant SCF and to reprogram it for their own purposes.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...