Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714896

RESUMEN

Proteomics is making important contributions to drug discovery, from target deconvolution to mechanism of action (MoA) elucidation and the identification of biomarkers of drug response. Here we introduce decryptE, a proteome-wide approach that measures the full dose-response characteristics of drug-induced protein expression changes that informs cellular drug MoA. Assaying 144 clinical drugs and research compounds against 8,000 proteins resulted in more than 1 million dose-response curves that can be interactively explored online in ProteomicsDB and a custom-built Shiny App. Analysis of the collective data provided molecular explanations for known phenotypic drug effects and uncovered new aspects of the MoA of human medicines. We found that histone deacetylase inhibitors potently and strongly down-regulated the T cell receptor complex resulting in impaired human T cell activation in vitro and ex vivo. This offers a rational explanation for the efficacy of histone deacetylase inhibitors in certain lymphomas and autoimmune diseases and explains their poor performance in treating solid tumors.

2.
EMBO J ; 42(23): e114665, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916885

RESUMEN

Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Proteómica/métodos , Adhesión en Parafina/métodos , Espectrometría de Masas en Tándem/métodos , Proteínas/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo
3.
Mol Cell Proteomics ; 22(9): 100632, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37586548

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.


Asunto(s)
Células Supresoras de Origen Mieloide , Ratones , Humanos , Animales , Células Supresoras de Origen Mieloide/metabolismo , Ensayos Analíticos de Alto Rendimiento , Proteoma/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo
4.
Nat Commun ; 14(1): 3548, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322067

RESUMEN

Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácido Tióctico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Ácido Tióctico/farmacología , Histona Desacetilasas/metabolismo , Antioxidantes/farmacología
5.
Science ; 380(6640): 93-101, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36926954

RESUMEN

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Asunto(s)
Antineoplásicos , Apoptosis , Procesamiento Proteico-Postraduccional , Proteómica , Antígenos CD20/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteómica/métodos , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Humanos
6.
J Am Chem Soc ; 144(41): 18861-18875, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200994

RESUMEN

We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.


Asunto(s)
Inhibidores de Histona Desacetilasas , Isoenzimas , Humanos , Vorinostat , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Células HeLa , Histona Desacetilasas/química , Poliaminas/farmacología , Zinc , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química
7.
Eur J Med Chem ; 240: 114594, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35853430

RESUMEN

In contrast to other sirtuins (NAD+-dependent class III lysine deacylases), inhibition of Sirt5 is poorly investigated, yet. Our present work is based on the recently identified Sirt5 inhibitor balsalazide, an approved drug with negligible bioavailability after oral administration. After gaining first insights into its structure-activity relationship in previous work, we were able to now develop heteroaryl-triaryls as a novel chemotype of drug-like, potent and subtype-selective Sirt5 inhibitors. The unfavourable azo group of the lead structure was modified in a systematic and comprehensive manner, leading us to a few open-chained and, most importantly, five-membered heteroaromatic substitutes (isoxazole CG_209, triazole CG_220, pyrazole CG_232) with very encouraging in vitro activities (IC50 on Sirt5 in the low micromolar range, <10 µM). These advanced inhibitors were free of cytotoxicity and showed favourable pharmacokinetic properties, as confirmed by permeability into mitochondria using live cell imaging experiments. Furthermore, results from calculations of the relative free binding affinities of the analogues compared to balsalazide as reference compound agreed well with the trends for inhibitory activities obtained in the in vitro experiments. Therefore, this method can be used to predict the affinity of closely related future potential Sirt5 inhibitors. Encouraged by our findings, we employed chemoproteomic selectivity profiling to confirm Sirt5 as main target of balsalazide and one of its improved analogues. An immobilised balsalazide-analogue specifically pulled down Sirt5 from whole cell lysates and competition experiments identified glutaryl-CoA dehydrogenase (GCDH) and nucleotide diphosphate kinase (NME4) as potential off-targets, once again confirming the selectivity of the novel balsalazide-derived Sirt5 inhibitors. In summary, a combination of targeted chemical synthesis, biological work, and computational studies led to a new generation of tailored Sirt5 inhibitors, which represent valuable chemical tools for the investigation of the physiological role of Sirt5, but could also serve as advanced lead structures for drug candidates for systemic use.


Asunto(s)
Sirtuinas , Lisina , Mitocondrias/metabolismo , Sirtuinas/metabolismo , Relación Estructura-Actividad
9.
Nat Chem Biol ; 18(8): 812-820, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35484434

RESUMEN

Drugs that target histone deacetylase (HDAC) entered the pharmacopoeia in the 2000s. However, some enigmatic phenotypes suggest off-target engagement. Here, we developed a quantitative chemical proteomics assay using immobilized HDAC inhibitors and mass spectrometry that we deployed to establish the target landscape of 53 drugs. The assay covers 9 of the 11 human zinc-dependent HDACs, questions the reported selectivity of some widely-used molecules (notably for HDAC6) and delineates how the composition of HDAC complexes influences drug potency. Unexpectedly, metallo-ß-lactamase domain-containing protein 2 (MBLAC2) featured as a frequent off-target of hydroxamate drugs. This poorly characterized palmitoyl-CoA hydrolase is inhibited by 24 HDAC inhibitors at low nanomolar potency. MBLAC2 enzymatic inhibition and knockdown led to the accumulation of extracellular vesicles. Given the importance of extracellular vesicle biology in neurological diseases and cancer, this HDAC-independent drug effect may qualify MBLAC2 as a target for drug discovery.


Asunto(s)
Histona Desacetilasas , Neoplasias , Descubrimiento de Drogas , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...