Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474334

RESUMEN

The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.


Asunto(s)
Citoesqueleto , Uniones Intercelulares , Animales , Citoesqueleto/metabolismo , Uniones Intercelulares/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Chaperonas Moleculares/metabolismo , Mamíferos/metabolismo
3.
Front Immunol ; 14: 1108289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875103

RESUMEN

Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.


Asunto(s)
Neoplasias del Colon , Mucositis , Humanos , Inflamación , Línea Celular , Células Epiteliales , Organoides
4.
Ann N Y Acad Sci ; 1515(1): 61-74, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35673768

RESUMEN

The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.


Asunto(s)
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Células Epiteliales/metabolismo , Humanos , Miosina Tipo II/metabolismo , Isoformas de Proteínas/metabolismo , Uniones Estrechas/metabolismo
5.
Cells ; 11(9)2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563773

RESUMEN

Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.


Asunto(s)
Cadherinas , Neoplasias Asociadas a Colitis , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Cadherinas/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/metabolismo , Sulfato de Dextran , Células Epiteliales/metabolismo , Humanos , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados
6.
FASEB J ; 36(5): e22290, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344227

RESUMEN

The actomyosin cytoskeleton serves as a key regulator of the integrity and remodeling of epithelial barriers by controlling assembly and functions of intercellular junctions and cell-matrix adhesions. Although biochemical mechanisms that regulate the activity of non-muscle myosin II (NM-II) in epithelial cells have been extensively investigated, little is known about assembly of the contractile myosin structures at the epithelial adhesion sites. UNC-45A is a cytoskeletal chaperone that is essential for proper folding of NM-II heavy chains and myofilament assembly. We found abundant expression of UNC-45A in human intestinal epithelial cell (IEC) lines and in the epithelial layer of the normal human colon. Interestingly, protein level of UNC-45A was decreased in colonic epithelium of patients with ulcerative colitis. CRISPR/Cas9-mediated knock-out of UNC-45A in HT-29cf8 and SK-CO15 IEC disrupted epithelial barrier integrity, impaired assembly of epithelial adherence and tight junctions and attenuated cell migration. Consistently, decreased UNC-45 expression increased permeability of the Drosophila gut in vivo. The mechanisms underlying barrier disruptive and anti-migratory effects of UNC-45A depletion involved disorganization of the actomyosin bundles at epithelial junctions and the migrating cell edge. Loss of UNC-45A also decreased contractile forces at apical junctions and matrix adhesions. Expression of deletion mutants revealed roles for the myosin binding domain of UNC-45A in controlling IEC junctions and motility. Our findings uncover a novel mechanism that regulates integrity and restitution of the intestinal epithelial barrier, which may be impaired during mucosal inflammation.


Asunto(s)
Actomiosina , Miosinas , Actomiosina/metabolismo , Células Epiteliales/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Mucosa Intestinal/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Uniones Estrechas/metabolismo
7.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021065

RESUMEN

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , Secuencia de Bases , Estudios de Casos y Controles , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Enfermedades Inflamatorias del Intestino/genética , Metotrexato/farmacología , Mutación/genética , Fosforilación/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Piroptosis/efectos de los fármacos , Piroptosis/genética , Reproducibilidad de los Resultados , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
8.
Cancers (Basel) ; 13(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670106

RESUMEN

Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.

9.
Curr Opin Physiol ; 19: 10-16, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32728653

RESUMEN

Disruption of epithelial barriers is a key pathogenic event of mucosal inflammation: It ignites the exaggerated immune response and accelerates tissue damage. Loss of barrier function is attributed to the abnormal structure and permeability of epithelial adherens junctions and tight junctions, driven by inflammatory stimuli through a variety of cellular mechanisms. This review focuses on roles of the actin cytoskeleton in mediating disruption of epithelial junctions and creation of leaky barriers in inflamed tissues. We summarize recent advances in understanding the role of cytoskeletal remodeling driven by actin filament turnover and myosin II-dependent contractility in the homeostatic regulation of epithelial barriers and barrier disruption during mucosal inflammation. We also discuss how the altered biochemical and physical environment of the inflamed tissues could affect the dynamics of the junction-associated actomyosin cytoskeleton, leading to the disruption of epithelial barriers.

10.
Front Cell Dev Biol ; 8: 588836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195251

RESUMEN

Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a ß-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether ß-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out ß-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of ß-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, ß-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from ß-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that ß-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.

11.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L481-L496, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32640839

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/patogenicidad , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Titanio/farmacología , Animales , Asma/tratamiento farmacológico , Asma/etiología , Bronquios/efectos de los fármacos , Bronquios/virología , Líquido del Lavado Bronquioalveolar/citología , Células Epiteliales/virología , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Virus Sincitiales Respiratorios/efectos de los fármacos
12.
Inflamm Bowel Dis ; 26(9): 1340-1352, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32266946

RESUMEN

BACKGROUND: Disruption of the gut barrier is an essential mechanism of inflammatory bowel diseases (IBDs) contributing to the development of mucosal inflammation. A hallmark of barrier disruption is the disassembly of epithelial adherens junctions (AJs) driven by decreased expression of a major AJ protein, E-cadherin. A group of isoxazole compounds, such as E-cadherin-upregulator (ECU) and ML327, were previously shown to stimulate E-cadherin expression in poorly differentiated human cancer cells. This study was designed to examine whether these isoxazole compounds can enhance and protect model intestinal epithelial barriers in vitro. METHODS: The study was conducted using T84, SK-CO15, and HT-29 human colonic epithelial cell monolayers. Disruption of the epithelial barrier was induced by pro-inflammatory cytokines, tumor necrosis factor-α, and interferon-γ. Barrier integrity and epithelial junction assembly was examined using different permeability assays, immunofluorescence labeling, and confocal microscopy. Epithelial restitution was analyzed using a scratch wound healing assay. RESULTS: E-cadherin-upregulator and ML327 treatment of intestinal epithelial cell monolayers resulted in several barrier-protective effects, including reduced steady-state epithelial permeability, inhibition of cytokine-induced barrier disruption and junction disassembly, and acceleration of epithelial wound healing. Surprisingly, these effects were not due to upregulation of E-cadherin expression but were mediated by multiple mechanisms including inhibition of junction protein endocytosis, attenuation of cytokine-induced apoptosis, and activation of promigratory Src and AKT signaling. CONCLUSIONS: Our data highlight ECU and ML327 as promising compounds for developing new therapeutic strategies to protect the integrity and accelerate the restitution of the intestinal epithelial barrier in IBD and other inflammatory disorders.


Asunto(s)
Uniones Adherentes/metabolismo , Cadherinas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Isoxazoles/farmacología , Niacinamida/análogos & derivados , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colon/citología , Células Epiteliales/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Niacinamida/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
13.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 395-408, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30290240

RESUMEN

Cell migration is a critical mechanism controlling tissue morphogenesis, epithelial wound healing and tumor metastasis. Migrating cells depend on orchestrated remodeling of the plasma membrane and the underlying actin cytoskeleton, which is regulated by the spectrin-adducin-based membrane skeleton. Expression of adducins is altered during tumorigenesis, however, their involvement in metastatic dissemination of tumor cells remains poorly characterized. This study investigated the roles of α-adducin (ADD1) and γ-adducin (ADD3) in regulating migration and invasion of non-small cell lung cancer (NSCLC) cells. ADD1 was mislocalized, whereas ADD3 was markedly downregulated in NSCLC cells with the invasive mesenchymal phenotype. CRISPR/Cas9-mediated knockout of ADD1 and ADD3 in epithelial-type NSCLC and normal bronchial epithelial cells promoted their Boyden chamber migration and Matrigel invasion. Furthermore, overexpression of ADD1, but not ADD3, in mesenchymal-type NSCLC cells decreased cell migration and invasion. ADD1-overexpressing NSCLC cells demonstrated increased adhesion to the extracellular matrix (ECM), accompanied by enhanced assembly of focal adhesions and hyperphosphorylation of Src and paxillin. The increased adhesiveness and decreased motility of ADD1-overexpressing cells were reversed by siRNA-mediated knockdown of Src. By contrast, the accelerated migration of ADD1 and ADD3-depleted NSCLC cells was ECM adhesion-independent and was driven by the upregulated expression of pro-motile cadherin-11. Overall, our findings reveal a novel function of adducins as negative regulators of NSCLC cell migration and invasion, which could be essential for limiting lung cancer progression and metastasis.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Uniones Célula-Matriz/metabolismo , Neoplasias Pulmonares/metabolismo , Cadherinas/biosíntesis , Cadherinas/genética , Proteínas de Unión a Calmodulina/biosíntesis , Proteínas de Unión a Calmodulina/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Uniones Célula-Matriz/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo , Células Epiteliales/metabolismo , Adhesiones Focales/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica , ARN Interferente Pequeño/metabolismo , Transducción de Señal
14.
Cells ; 9(1)2019 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905721

RESUMEN

Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures, filaments, and rings. The septin cytoskeleton has a number of cellular functions, including regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin, forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells. Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution is warranted while using this compound to examine the biological functions of septins in cellular systems and model organisms.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , Septinas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Línea Celular , Movimiento Celular/genética , Citoesqueleto/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Permeabilidad/efectos de los fármacos , Septinas/genética , Septinas/metabolismo
15.
Biochem Biophys Res Commun ; 486(4): 951-957, 2017 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-28359759

RESUMEN

A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Células de Paneth/citología , Células de Paneth/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones
16.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1183-1194, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28322932

RESUMEN

The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.


Asunto(s)
Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/patología , Absorción Intestinal , Mucosa Intestinal/patología , Transporte de Proteínas
17.
Am J Physiol Gastrointest Liver Physiol ; 308(9): G745-56, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25792565

RESUMEN

Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.


Asunto(s)
Uniones Adherentes/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Microfilamentos/metabolismo , Uniones Estrechas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Actomiosina/metabolismo , Uniones Adherentes/patología , Animales , Células CACO-2 , Polaridad Celular , Quistes/metabolismo , Quistes/patología , Células Epiteliales/patología , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/patología , Ratones , Proteínas de Microfilamentos/genética , Morfogénesis , Permeabilidad , Interferencia de ARN , Transducción de Señal , Uniones Estrechas/patología , Transfección
18.
Mol Biol Cell ; 25(20): 3133-46, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25143399

RESUMEN

Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not ß-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis.


Asunto(s)
Actinas/metabolismo , Transdiferenciación Celular/fisiología , Células Epiteliales/metabolismo , Miofibroblastos/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Humanos , Factor de Respuesta Sérica/metabolismo
19.
Ann N Y Acad Sci ; 1257: 133-41, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22671599

RESUMEN

ZO-2 is a membrane-associated guanylate kinase homologue (MAGUK) tight protein associated with the cytoplasmic surface of tight junctions. Here, we describe how ZO-2 is a multidomain molecule that binds to a variety of cell signaling proteins, to the actin cytoskeleton, and to gap, tight, and adherens junction proteins. In sparse cultures, ZO-2 is present at the nucleus and associates with molecules active in gene transcription and pre-mRNA processing. ZO-2 inhibits the Wnt signaling pathway, reduces cell proliferation, and promotes apoptosis; its absence, mutation, or overexpression is present in various human diseases, including deafness and cancer.


Asunto(s)
Apoptosis/fisiología , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-2/metabolismo , Proliferación Celular , Humanos , Proteínas de la Membrana/genética , Transducción de Señal , Uniones Estrechas/fisiología
20.
Exp Cell Res ; 316(19): 3124-39, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20868680

RESUMEN

With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Antígenos CD1/metabolismo , Secuencia de Bases , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Clonación Molecular , Ciclina D1/genética , Perros , Regulación de la Expresión Génica , Humanos , Inmunoprecipitación , Carioferinas/metabolismo , Riñón/metabolismo , Proteínas con Dominio LIM , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de la Zonula Occludens-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...