Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Viruses ; 15(5)2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37243180

RESUMEN

West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Animales , Caballos , Ratones , Fiebre del Nilo Occidental/epidemiología , Regiones no Traducidas 3' , Virulencia , Pollos , Mosquitos Vectores , Mamíferos
2.
Pathogens ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986282

RESUMEN

Mosquito-borne diseases have a significant impact on humans and animals and this impact is exacerbated by environmental changes. However, in Tunisia, surveillance of the West Nile virus (WNV) is based solely on the surveillance of human neuroinvasive infections and no study has reported mosquito-borne viruses (MBVs), nor has there been any thorough serological investigation of anti-MBV antibodies in horses. This study therefore sought to investigate the presence of MBVs in Tunisia. Among tested mosquito pools, infections by WNV, Usutu virus (USUV), and Sindbis virus (SINV) were identified in Cx. perexiguus. The serosurvey showed that 146 of 369 surveyed horses were positive for flavivirus antibodies using the cELISA test. The microsphere immunoassay (MIA) showed that 74 of 104 flavivirus cELISA-positive horses were positive for WNV, 8 were positive for USUV, 7 were positive for undetermined flaviviruses, and 2 were positive for tick-borne encephalitis virus (TBEV). Virus neutralization tests and MIA results correlated well. This study is the first to report the detection of WNV, USUV and SINV in Cx. perexiguus in Tunisia. Besides, it has shown that there is a significant circulation of WNV and USUV among horses, which is likely to cause future sporadic outbreaks. An integrated arbovirus surveillance system that includes entomological surveillance as an early alert system is of major epidemiological importance.

3.
Comp Immunol Microbiol Infect Dis ; 94: 101947, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638646

RESUMEN

In order to determine the prevalence of equine infectious anemia virus (EIAV), Usutu virus (USUV), and West Nile virus (WNV) in eastern Algerian drylands, 340 sera from distinct equids have been collected from 2015 to 2017. Serological analysis for the presence of antibodies against EIAV and flaviviruses was performed using commercially available ELISAs. Sera detected positive, doubtful, or negative close to the doubtful threshold in flavivirus ELISA were tested by the virus neutralization test (VNT), using WNV and USUV strains. The prevalence of WNV antibodies with ELISA was 11.47% (39/340) against 13.53% (46/340) by WNV VNT. EIAV antibodies were not detected in any samples. WNV seroprevalence varies with species, breed and location of horses. Only, one equid was positive for both WNV and USUV neutralizing antibodies. This is the first screening on equids sera of EIAV and USUV in Algeria. This study indicate that WNV and possibly USUV have circulated/are circulating in the Algerian equine population, unlike EIAV does not seem to be present.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Caballos , Fiebre del Nilo Occidental/veterinaria , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Estudios Seroepidemiológicos , Anticuerpos Antivirales , Factores de Riesgo
4.
Viruses ; 15(1)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36680227

RESUMEN

The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay. West Nile virus (WNV) was detected in 10/365 pools of Culex pipiens (n = 8), Culex modestus (n = 1) and Aedes vexans (n = 1) from both studied counties. We also report the first molecular detection of Sindbis virus (SINV) RNA in the country in one pool of Culex modestus. WNV infection was confirmed by real-time RT-PCR (10/10) and virus isolation on Vero or C6/36 cells (four samples). For the SINV-positive pool, no cytopathic effectwas observed after infection of Vero or C6/36 cells, but no amplification was obtained in conventional SINV RT-PCR. Phylogenetic analysis of WNV partial NS5 sequences revealed that WNV lineage 2 of theCentral-Southeast European clade, has a wider circulation in Romania than previously known.


Asunto(s)
Aedes , Culex , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Virus Sindbis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Filogenia , Rumanía/epidemiología , Microfluídica , Fiebre del Nilo Occidental/veterinaria , ARN
5.
Front Microbiol ; 14: 1324069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298539

RESUMEN

West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3'UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3'UTR regions are important in Cx. pipiens infection and possibly in vector competence.

6.
Euro Surveill ; 27(25)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748300

RESUMEN

BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.


Asunto(s)
Culicidae , Infecciones por Flavivirus , Salud Única , Fiebre del Nilo Occidental , Animales , Aves/virología , Estudios Transversales , Culicidae/virología , Perros/virología , Flavivirus/genética , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Francia/epidemiología , Caballos/virología , Humanos , Estudios Seroepidemiológicos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/genética
7.
Front Microbiol ; 13: 863725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479640

RESUMEN

Tick-borne encephalitis virus' (TBEV) geographic range and the human incidence are increasing throughout Europe, putting a number of non-endemic regions and countries at risk of outbreaks. In spring 2020, there was an outbreak of tick-born encephalitis (TBE) in Ain, Eastern France, where the virus had never been detected before. All patients but one had consumed traditional unpasteurised raw goat cheese from a local producer. We conducted an investigation in the suspected farm using an integrative One Health approach. Our methodology included (i) the detection of virus in cheese and milk products, (ii) serological testing of all animals in the suspected farm and surrounding farms, (iii) an analysis of the landscape and localisation of wooded area, (iv) the capture of questing ticks and small mammals for virus detection and estimating enzootic hazard, and (v) virus isolation and genome sequencing. This approach allowed us to confirm the alimentary origin of the TBE outbreak and witness in real-time the seroconversion of recently exposed individuals and excretion of virus in goat milk. In addition, we identified a wooded focus area where and around which there is a risk of TBEV exposure. We provide the first TBEV isolate responsible for the first alimentary-transmitted TBE in France, obtained its full-length genome sequence, and found that it belongs to the European subtype of TBEV. TBEV is now a notifiable human disease in France, which should facilitate surveillance of its incidence and distribution throughout France.

8.
Food Microbiol ; 104: 104003, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35287822

RESUMEN

The transmission of tick-borne encephalitis virus (TBEV) through food is rare, but can occur through the consumption of raw milk products from animals infected by tick bites. In 2020, France faced a TBEV outbreak linked to the consumption of unpasteurized goat cheese. The aim of this study was to develop and characterize a molecular method for the detection of TBEV in raw milk products based on the recent international standard PR ISO/DIS 16140-4. The TBEV recovery rates varied with the inoculation level and settings. The LOD50 and LOD95 of TBEV were 6.40 × 103 genome copies per g or per mL and 2.84 × 104 genome copies per g or per mL, respectively. The percentages of RT-qPCR inhibitions were lower than 75% and the murine norovirus (MNV-1), used as process control, was detected in all samples with a recovery rate higher than 1%, as recommended in ISO 15216. We conclude that the described method is appropriate to detect TBEV in raw milk products for routine diagnosis, and to assess potential health risks.


Asunto(s)
Queso , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/epidemiología , Cabras , Ratones , Leche
9.
Viruses ; 13(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34960673

RESUMEN

The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.


Asunto(s)
Enfermedades de las Aves/epidemiología , Infecciones por Flavivirus/veterinaria , Flavivirus/fisiología , Enfermedades de los Caballos/epidemiología , Animales , Anticuerpos Antivirales/sangre , Enfermedades de las Aves/sangre , Enfermedades de las Aves/virología , Aves , Ensayo de Inmunoadsorción Enzimática/veterinaria , Flavivirus/genética , Flavivirus/inmunología , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/sangre , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Enfermedades de los Caballos/sangre , Enfermedades de los Caballos/virología , Caballos , Estudios Seroepidemiológicos , España/epidemiología
10.
Front Public Health ; 9: 649190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178915

RESUMEN

After spreading in the Americas, West Nile virus was detected in Guadeloupe (French West Indies) for the first time in 2002. Ever since, several organizations have conducted research, serological surveys, and surveillance activities to detect the virus in horses, birds, mosquitoes, and humans. Organizations often carried them out independently, leading to knowledge gaps within the current virus' situation. Nearly 20 years after the first evidence of West Nile virus in the archipelago, it has not yet been isolated, its impact on human and animal populations is unknown, and its local epidemiological cycle is still poorly understood. Within the framework of a pilot project started in Guadeloupe in 2019, West Nile virus was chosen as a federative model to apply the "One Health" approach for zoonotic epidemiological surveillance and shift from a sectorial to an integrated surveillance system. Human, animal, and environmental health actors involved in both research and surveillance were considered. Semi-directed interviews and a Social Network Analysis were carried out to learn about the surveillance network structure and actors, analyze information flows, and identify communication challenges. An information system was developed to fill major gaps: users' needs and main functionalities were defined through a participatory process where actors also tested and validated the tool. Additionally, all actors shared their data, which were digitized, cataloged, and centralized, to be analyzed later. An R Shiny server was integrated into the information system, allowing an accessible and dynamic display of data showcasing all of the partners' information. Finally, a series of virtual workshops were organized among actors to discuss preliminary results and plan the next steps to improve West Nile Virus and vector-borne or emerging zoonosis surveillance. The actors are willing to build a more resilient and cooperative network in Guadeloupe with improved relevance, efficiency, and effectiveness of their work.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Región del Caribe/epidemiología , Guadalupe/epidemiología , Caballos , Mosquitos Vectores , Proyectos Piloto , Indias Occidentales , Fiebre del Nilo Occidental/epidemiología
11.
Vaccine ; 39(23): 3161-3168, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33958224

RESUMEN

African horse sickness virus (AHSV) is an Orbivirus within the Reoviridae family, spread by Culicoides species of midges, which infects equids with high mortality, particularly in horses and has a considerable impact on the equine industry. In order to control the disease, we previously described Entry Competent Replication Abortive (ECRA) virus strains for each of the nine distinct AHSV serotypes and demonstrated their potential as vaccines, first in type I interferon receptor (IFNAR-/-) knockout mice, and then in ponies. In this report we have investigated whether or not a combination ECRA vaccine comprising nine vaccine strains as two different cocktails is as efficient in ponies and the duration of the immunity triggered by ECRA vaccines. In one study, a group of ponies were vaccinated with a cocktail of 4 vaccine strains, followed by a vaccination of the remaining 5 vaccine strains, mimicking the current live attenuated vaccine regimen. In the second study, ponies were vaccinated with a single ECRA-AHSV strain and monitored for 6 months. The first group of ponies developed neutralising antibody responses against all 9 serotypes, indicating that no cross-serotype interference occurred, while the second group developed robust neutralising antibody responses against the single serotype that were sustained at the same level throughout a 6-month study. The results support our previous data and further validate ECRA vaccines as a safe and efficacious replacement of current live vaccines.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Vacunas Virales , Enfermedad Equina Africana/prevención & control , Virus de la Enfermedad Equina Africana/genética , Animales , Caballos , Ratones , Serogrupo , Vacunas Atenuadas
12.
Comp Immunol Microbiol Infect Dis ; 76: 101646, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33845402

RESUMEN

West Nile virus (WNV) was recently detected in Culex pipiens mosquitoes in Morocco. The aim of this study was to evaluate the seroprevalence of WNV in humans and in domestic birds in two regions of Morocco by the detection of IgG antibodies. Blood samples were obtained from 91 human patients and 92 domestic birds from September to December 2019. All study samples were tested using competitive enzyme-linked immunosorbent assay (cELISA) and WNV neutralization tests (VNT) were performed on positive sera. Of all samples, 4 (4.39 %) humans and 4 (4.34 %) birds were found to be seropositive for flaviviruses by the cELISA test. The VNT revealed that three of the four human samples detected positive by cELISA contained neutralizing antibodies against WNV. Two bird samples were confirmed positive by VNT. These results show a significant seroprevalence of anti-WNV antibodies and therefore suggest the active circulation and exposure of human and bird populations in the northwest of Morocco.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Anticuerpos Antivirales , Aves , Ensayo de Inmunoadsorción Enzimática/veterinaria , Humanos , Marruecos/epidemiología , Estudios Seroepidemiológicos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
13.
Virologie (Montrouge) ; 25(1): 12-28, 2021 Feb 01.
Artículo en Francés | MEDLINE | ID: mdl-33650493

RESUMEN

Arboviruses are viruses transmitted to humans and/or animals by hematophagous arthropods. They have a significant economic and public health impact. Given the number of arboviruses already identified and their great genetic variability, it is essential to have highly flexible tools for their monitoring. Arbovirus circulation within animal populations can be demonstrated by direct and/or indirect screening of a specific virus within vertebrate hosts and/or arthropod vectors. Viruses have great adaptive capacities that enable them to emerge into new geographic areas and/or cross species barriers. Over the decades, arbovirus monitoring has considerably evolved due to innovations in detection technologies. The objectives of this review are to list and assess (i) the current tools for direct or indirect screening for arboviruses, (ii) the new generation tools that best meet expectations in terms of optimal arbovirus monitoring and (iii) the potentials for improved arbovirus monitoring.


Asunto(s)
Infecciones por Arbovirus , Arbovirus , Artrópodos , Animales , Infecciones por Arbovirus/epidemiología , Vectores Artrópodos , Humanos , Vertebrados
15.
J Neuroinflammation ; 18(1): 11, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407600

RESUMEN

BACKGROUND: Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS: The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS: Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS: Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.


Asunto(s)
Flavivirus/fisiología , Flavivirus/patogenicidad , Inmunocompetencia/fisiología , Neuronas/fisiología , Neuronas/virología , Animales , Animales Recién Nacidos , Aves , Línea Celular Transformada , Chlorocebus aethiops , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/diagnóstico , Infecciones por Flavivirus/epidemiología , Humanos , Ratones , Células Vero , Virulencia/fisiología
16.
Vet Med Sci ; 7(1): 204-209, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858762

RESUMEN

Recent expansion of arboviruses such as West Nile (WNV), Usutu (USUV), and tick-borne encephalitis (TBEV) over their natural range of distribution needs strengthening their surveillance. As common viral vertebrate hosts, birds and horses deserve special attention with routine serological surveillance. Here, we estimated the seroprevalence of WNV, USUV and TBEV in 160 migrating/resident birds and 60 horses sampled in Mazandaran, Golestan, North Khorasan, Kordestan provinces and Golestan province of Iran respectively. ELISA results showed that of 220 collected samples, 32 samples (14.54%), including 22 birds and 10 horses, were positive. Microsphere immunoassay results showed that 16.7% (10/60) of horse blood samples collected in Golestan province were seropositive against WNV (7; 11.7%), Flavivirus (2; 3.3%) and seropositive for USUV or WNV (1; 1.7%). Furthermore, micro virus neutralization tests revealed that four of seven ELISA-positive bird blood samples were seropositive against WNV: two Egyptian vultures, and one long-legged buzzard collected in Golestan province as well as a golden eagle collected in North Khorasan province. No evidence of seropositivity with TBEV was observed in collected samples. We showed that WNV, responsible for neuroinvasive infection in vertebrates, is circulating among birds and horses in Iran, recommending a sustained surveillance of viral infections in animals, and anticipating future infections in humans.


Asunto(s)
Enfermedades de las Aves/epidemiología , Aves , Enfermedades de los Caballos/epidemiología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/aislamiento & purificación , Animales , Animales Salvajes , Enfermedades de las Aves/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Caballos/virología , Caballos , Irán/epidemiología , Prevalencia , Estudios Seroepidemiológicos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología
17.
Pathogens ; 9(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266071

RESUMEN

West Nile virus (WNV) and Usutu virus (USUV) are zoonotic arboviruses. These flaviviruses are mainly maintained in the environment through an enzootic cycle involving mosquitoes and birds. Horses and humans are incidental, dead-end hosts, but can develop severe neurological disorders. Nevertheless, there is little data regarding the involvement of other mammals in the epidemiology of these arboviruses. In this study, we performed a serosurvey to assess exposure to these viruses in captive birds and mammals in a zoo situated in the south of France, an area described for the circulation of these two viruses. A total of 411 samples comprising of 70 species were collected over 16 years from 2003 to 2019. The samples were first tested by a competitive enzyme-linked immunosorbent assay. The positive sera were then tested using virus-specific microneutralization tests against USUV and WNV. USUV seroprevalence in birds was 10 times higher than that of WNV (14.59% versus 1.46%, respectively). Among birds, greater rhea (Rhea Americana) and common peafowl (Pavo cristatus) exhibited the highest USUV seroprevalence. Infections occurred mainly between 2016-2018 corresponding to a period of high circulation of these viruses in Europe. In mammalian species, antibodies against WNV were detected in one dama gazelle (Nanger dama) whereas serological evidence of USUV infection was observed in several Canidae, especially in African wild dogs (Lycaon pictus). Our study helps to better understand the exposure of captive species to WNV and USUV and to identify potential host species to include in surveillance programs in zoos.

18.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266206

RESUMEN

West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird-mosquito-bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.


Asunto(s)
Especificidad del Huésped , Interacciones Huésped-Patógeno , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Animales , Culicidae/virología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Invertebrados , Mosquitos Vectores/virología , Especificidad de la Especie , Vertebrados , Virulencia , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/patogenicidad
19.
Pathogens ; 9(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143300

RESUMEN

Since 2015, annual West Nile virus (WNV) outbreaks of varying intensities have been reported in France. Recent intensification of enzootic WNV circulation was observed in the South of France with most horse cases detected in 2015 (n = 49), 2018 (n = 13), and 2019 (n = 13). A WNV lineage 1 strain was isolated from a horse suffering from West Nile neuro-invasive disease (WNND) during the 2015 episode in the Camargue area. A breaking point in WNV epidemiology was achieved in 2018, when WNV lineage 2 emerged in Southeastern areas. This virus most probably originated from WNV spread from Northern Italy and caused WNND in humans and the death of diurnal raptors. WNV lineage 2 emergence was associated with the most important human WNV epidemics identified so far in France (n = 26, including seven WNND cases and two infections in blood and organ donors). Two other major findings were the detection of WNV in areas with no or limited history of WNV circulation (Alpes-Maritimes in 2018, Corsica in 2018-2019, and Var in 2019) and distinct spatial distribution of human and horse WNV cases. These new data reinforce the necessity to enhance French WNV surveillance to better anticipate future WNV epidemics and epizootics and to improve the safety of blood and organ donations.

20.
PLoS Negl Trop Dis ; 14(4): e0008223, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32324736

RESUMEN

Usutu virus (USUV), an African mosquito-borne flavivirus closely related to West Nile virus, was first isolated in South Africa in 1959. USUV emerged in Europe two decades ago, causing notably massive mortality in Eurasian blackbirds. USUV is attracting increasing attention due to its potential for emergence and its rapid spread in Europe in recent years. Although mainly asymptomatic or responsible for mild clinical signs, USUV was recently described as being associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting the potential health threat posed by the virus. Despite this, USUV pathogenesis remains largely unexplored. The aim of this study was to evaluate USUV neuropathogenicity using in vivo and in vitro approaches. Our results indicate that USUV efficiently replicates in the murine central nervous system. Replication in the spinal cord and brain is associated with recruitment of inflammatory cells and the release of inflammatory molecules as well as induction of antiviral-responses without major modulation of blood-brain barrier integrity. Endothelial cells integrity is also maintained in a human model of the blood-brain barrier despite USUV replication and release of pro-inflammatory cytokines. Furthermore, USUV-inoculated mice developed major ocular defects associated with inflammation. Moreover, USUV efficiently replicates in human retinal pigment epithelium. Our results will help to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.


Asunto(s)
Flavivirus/patogenicidad , Modelos Biológicos , Sistema Nervioso/virología , Animales , Encéfalo/virología , Modelos Animales de Enfermedad , Células Endoteliales/virología , Células Epiteliales/virología , Flavivirus/crecimiento & desarrollo , Humanos , Ratones , Epitelio Pigmentado Ocular/virología , Médula Espinal/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...