Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(9): 1904-1914, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639539

RESUMEN

The compound N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), which combines a selenium atom and a benzamide nucleus in an organic structure, has demonstrated a fast antidepressant-like effect in mice. This action is influenced by the serotonergic system and represents a promising development in the search for novel antidepressant drugs to treat major depressive disorder (MDD), which often resists conventional treatments. This study aimed to further explore the mechanism underlying the antidepressant-like effect of SePB by investigating the involvement of the dopaminergic and noradrenergic systems in the tail suspension test (TST) in mice and evaluating its pharmacokinetic profile in silico. Preadministration of the dopaminergic antagonists haloperidol (0.05 mg/kg, intraperitoneally (i.p.)), a nonselective antagonist of dopamine (DA) receptors, SCH23390 (0.01 mg/kg, subcutaneously (s.c.)), a D1 receptor antagonist, and sulpiride (50 mg/kg, i.p.), a D2/3 receptor antagonist, before SePB (10 mg/kg, intragastrically (i.g.)) prevented the anti-immobility effect of SePB in the TST, demonstrating that these receptors are involved in the antidepressant-like effect of SePB. Administration of the noradrenergic antagonists prazosin (1 mg/kg, i.p.), an α1-adrenergic antagonist, yohimbine (1 mg/kg, i.p.), an α2-adrenergic antagonist, and propranolol (2 mg/kg, i.p.), a ß-adrenergic antagonist, did not block the antidepressant-like effect of SePB on TST, indicating that noradrenergic receptors are not involved in this effect. Additionally, the coadministration of SePB and bupropion (a noradrenaline/dopamine reuptake inhibitor) at subeffective doses (0.1 and 3 mg/kg, respectively) produced antidepressant-like effects. SePB also demonstrated good oral bioavailability and low toxicity in computational absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses. These findings suggest that SePB has potential as a new antidepressant drug candidate with a particular focus on the dopaminergic system.


Asunto(s)
Antidepresivos , Benzamidas , Animales , Antidepresivos/farmacología , Antidepresivos/farmacocinética , Benzamidas/farmacología , Benzamidas/farmacocinética , Ratones , Masculino , Antagonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacocinética , Dopamina/metabolismo , Suspensión Trasera , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/farmacocinética , Compuestos de Organoselenio/química
2.
Toxicol Appl Pharmacol ; 484: 116881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437958

RESUMEN

Pain has a negative impact on public health, reducing quality of life. Unfortunately, current treatments are not fully effective and have adverse effects. Therefore, there is a need to develop new analgesic compounds. Due to promising results regarding the antinociceptive effect of N-(3-(phenylselanyl)prop-2-in-1-yl)benzamide (SePB), this study aimed to evaluate the participation of the dopaminergic and noradrenergic systems in this effect in mice, as well as its toxicity. To this, the antagonists sulpiride (D2/D3 receptor antagonist, 5 mg/kg), SCH-23390 (D1 receptor antagonist, 0.05 mg/kg), prazosin (α1 adrenergic receptor antagonist, 0.15 mg/kg), yohimbine (α2-adrenergic receptors, 0.15 mg/kg) and propranolol (non-selective ß-adrenergic antagonist, 10 mg/kg) were administered intraperitoneally to mice 15 min before SePB (10 mg/kg, intragastrically), except for propranolol (20 min). After 26 min of SePB administration, the open field test was performed for 4 min to assess locomotor activity, followed by the tail immersion test to measure the nociceptive response. For the toxicity test, animals received a high dose of 300 mg/kg of SePB. SePB showed an increase in the latency for nociceptive response in the tail immersion test, and this effect was prevented by SCH-23390, yohimbine and propranolol, indicating the involvement of D1, α2 and ß-adrenergic receptors in the antinociceptive mechanism of the SePB effect. No changes were observed in the open field test, and the toxicity assessment suggested that SePB has low potential to induce toxicity. These findings contribute to understanding SePB's mechanism of action, with a focus on the development of new alternatives for pain treatment.


Asunto(s)
Propranolol , Calidad de Vida , Ratones , Animales , Propranolol/farmacología , Propranolol/uso terapéutico , Analgésicos/toxicidad , Dolor/tratamiento farmacológico , Norepinefrina , Yohimbina/toxicidad , Yohimbina/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Dopamina , Sulpirida , Receptores Adrenérgicos alfa 2
3.
ACS Chem Neurosci ; 14(12): 2333-2346, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294690

RESUMEN

Major depressive disorder (MDD) is a psychiatric disorder that affects a large portion of the population, with dysregulation of the serotonergic system, which is deeply involved in both the pathophysiology of MDD and mechanism of action of many antidepressants. Current pharmacological therapies do not meet the neurobiological needs of all depressed individuals, making the development of new antidepressants necessary. In recent decades, compounds containing triazoles have become promising due to their range of biological activities, including antidepressant activity. In this study, we evaluated the antidepressant-like effect of a hybrid containing triazole and acetophenone, 1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one (ETAP) (0.5-5 mg/kg), in the forced swimming test (FST) and tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in this effect. Our findings demonstrated that ETAP exhibited an antidepressant-like effect from the dose of 1 mg/kg and that this effect is modulated by 5-HT2A/2C and 5-HT4 receptors. We also demonstrated that this effect may be related to inhibition of monoamine oxidase A activity in the hippocampus. Additionally, we evaluated the in silico pharmacokinetic profile of ETAP, which predicted its penetration into the central nervous system. ETAP exhibited a low potential for toxicity at a high dose, making this molecule interesting for the development of a new therapeutic strategy for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Serotonina , Ratones , Animales , Serotonina/fisiología , Trastorno Depresivo Mayor/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación/psicología , Suspensión Trasera/psicología , Depresión/tratamiento farmacológico
4.
Chem Biol Interact ; 359: 109918, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35351428

RESUMEN

Pain strongly affects public health, both because of the patient suffering and the socioeconomic impact. The available drugs for pain treatment are not fully effective and have many adverse effects. Therefore, there is a need to obtain new analgesic compounds. This study evaluated the antinociceptive effect of N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), an organoselenium compound containing the benzamide moiety, through time (15-120 min) and dose-response (1-50 mg/kg) curves in thermal and chemical mice models of nociception, as well as the involvement of the serotonergic system in this effect. The open-field test (OFT) was carried out to assess locomotor activity. SePB (10 mg/kg) induced an increase in the latency to nociception response in the tail immersion test from 30 min. In the dose-response curves, SePB at different doses reduced latency time to nociceptive response in the tail immersion and hot plate tests, and reduced the licking time in the glutamate test, demonstrating antinociceptive effect, without altering the locomotor activity of mice. WAY100635 (0.5 mg/kg, subcutaneously, a 5-HT1A receptor antagonist), ketanserin (0.3 mg/kg, intraperitoneally, a 5-HT2A/2C receptor antagonist), but not ondansetron (0.5 mg/kg, intraperitoneally, a 5-HT3 receptor antagonist), administered 15 min before SePB, prevented the increased latency to nociceptive response induced by SePB in the tail immersion test, demonstrating that 5-HT1A and 5-HT2A/2C receptors are involved in the antinociceptive effect of SePB. Upon more studies evaluating SePB antinociceptive effects in chronic pain models and its toxicity, this compound could be indicated as an interesting molecule to treat pain.


Asunto(s)
Analgésicos , Serotonina , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Dolor/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...