Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Invest Radiol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598653

RESUMEN

OBJECTIVES: Chronic liver diseases (CLDs) have diverse etiologies. To better classify CLDs, we explored the ability of longitudinal multiparametric MRI (magnetic resonance imaging) in depicting alterations in liver morphology, inflammation, and hepatocyte and macrophage activity in murine high-fat diet (HFD)- and carbon tetrachloride (CCl4)-induced CLD models. MATERIALS AND METHODS: Mice were either untreated, fed an HFD for 24 weeks, or injected with CCl4 for 8 weeks. Longitudinal multiparametric MRI was performed every 4 weeks using a 7 T MRI scanner, including T1/T2 relaxometry, morphological T1/T2-weighted imaging, and fat-selective imaging. Diffusion-weighted imaging was applied to assess fibrotic remodeling and T1-weighted and T2*-weighted dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI using gadoxetic acid and ferucarbotran to target hepatocytes and the mononuclear phagocyte system, respectively. Imaging data were associated with histopathological and serological analyses. Principal component analysis and clustering were used to reveal underlying disease patterns. RESULTS: The MRI parameters significantly correlated with histologically confirmed steatosis, fibrosis, and liver damage, with varying importance. No single MRI parameter exclusively correlated with 1 pathophysiological feature, underscoring the necessity for using parameter patterns. Clustering revealed early-stage, model-specific patterns. Although the HFD model exhibited pronounced liver fat content and fibrosis, the CCl4 model indicated reduced liver fat content and impaired hepatocyte and macrophage function. In both models, MRI biomarkers of inflammation were elevated. CONCLUSIONS: Multiparametric MRI patterns can be assigned to pathophysiological processes and used for murine CLD classification and progression tracking. These MRI biomarker patterns can directly be explored clinically to improve early CLD detection and differentiation and to refine treatments.

2.
Invest Radiol ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038691

RESUMEN

OBJECTIVES: Optical fluorescence imaging can track the biodistribution of fluorophore-labeled drugs, nanoparticles, and antibodies longitudinally. In hybrid computed tomography-fluorescence tomography (CT-FLT), CT provides the anatomical information to generate scattering and absorption maps supporting a 3-dimensional reconstruction from the raw optical data. However, given the CT's limited soft tissue contrast, fluorescence reconstruction and quantification can be inaccurate and not sufficiently detailed. Magnetic resonance imaging (MRI) can overcome these limitations and extend the options for tissue characterization. Thus, we aimed to establish a hybrid CT-MRI-FLT approach for whole-body imaging and compared it with CT-FLT. MATERIALS AND METHODS: The MRI-based hybrid imaging approaches were established first by scanning a water and coconut oil-filled phantom, second by quantifying Cy7 concentrations of inserts in dead mice, and finally by analyzing the biodistribution of AF750-labeled immunoglobulins (IgG, IgA) in living SKH1 mice. Magnetic resonance imaging, acquired with a fat-water-separated mDixon sequence, CT, and FLT were co-registered using markers in the mouse holder frame filled with white petrolatum, which was solid, stable, and visible in both modalities. RESULTS: Computed tomography-MRI fusion was confirmed by comparing the segmentation agreement using Dice scores. Phantom segmentations showed good agreement, after correction for gradient linearity distortion and chemical shift. Organ segmentations in dead and living mice revealed adequate agreement for fusion. Marking the mouse holder frame and the successful CT-MRI fusion enabled MRI-FLT as well as CT-MRI-FLT reconstructions. Fluorescence tomography reconstructions supported by CT, MRI, or CT-MRI were comparable in dead mice with 60 pmol fluorescence inserts at different locations. Although standard CT-FLT reconstruction only considered general values for soft tissue, skin, lung, fat, and bone scattering, MRI's more versatile soft tissue contrast enabled the additional consideration of liver, kidneys, and brain. However, this did not change FLT reconstructions and quantifications significantly, whereas for extending scattering maps, it was important to accurately segment the organs and the entire mouse body. The various FLT reconstructions also provided comparable results for the in vivo biodistribution analyses with fluorescent immunoglobulins. However, MRI additionally enabled the visualization of gallbladder, thyroid, and brain. Furthermore, segmentations of liver, spleen, and kidney were more reliable due to better-defined contours than in CT. Therefore, the improved segmentations enabled better assignment of fluorescence signals and more differentiated conclusions with MRI-FLT. CONCLUSIONS: Whole-body CT-MRI-FLT was implemented as a novel trimodal imaging approach, which allowed to more accurately assign fluorescence signals, thereby significantly improving pharmacokinetic analyses.

3.
Front Bioinform ; 3: 977228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122998

RESUMEN

Dynamic contrast-enhanced (DCE) perfusion imaging has shown great potential to non-invasively assess cancer development and its treatment by their characteristic tissue signatures. Different tracer kinetics models are being applied to estimate tissue and tumor perfusion parameters from DCE perfusion imaging. The goal of this work is to provide an in silico model-based pipeline to evaluate how these DCE imaging parameters may relate to the true tissue parameters. As histology data provides detailed microstructural but not functional parameters, this work can also help to better interpret such data. To this aim in silico vasculatures are constructed and the spread of contrast agent in the tissue is simulated. As a proof of principle we show the evaluation procedure of two tracer kinetic models from in silico contrast-agent perfusion data after a bolus injection. Representative microvascular arterial and venous trees are constructed in silico. Blood flow is computed in the different vessels. Contrast-agent input in the feeding artery, intra-vascular transport, intra-extravascular exchange and diffusion within the interstitial space are modeled. From this spatiotemporal model, intensity maps are computed leading to in silico dynamic perfusion images. Various tumor vascularizations (architecture and function) are studied and show spatiotemporal contrast imaging dynamics characteristic of in vivo tumor morphotypes. The Brix II also called 2CXM, and extended Tofts tracer-kinetics models common in DCE imaging are then applied to recover perfusion parameters that are compared with the ground truth parameters of the in silico spatiotemporal models. The results show that tumor features can be well identified for a certain permeability range. The simulation results in this work indicate that taking into account space explicitly to estimate perfusion parameters may lead to significant improvements in the perfusion interpretation of the current tracer-kinetics models.

4.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108226

RESUMEN

Acetylsalicylic acid (ASA) is a well-established drug for heart attack and stroke prophylaxis. Furthermore, numerous studies have reported an anti-carcinogenic effect, but its exact mechanism is still unknown. Here, we applied VEGFR-2-targeted molecular ultrasound to explore a potential inhibitory effect of ASA on tumor angiogenesis in vivo. Daily ASA or placebo therapy was performed in a 4T1 tumor mouse model. During therapy, ultrasound scans were performed using nonspecific microbubbles (CEUS) to determine the relative intratumoral blood volume (rBV) and VEGFR-2-targeted microbubbles to assess angiogenesis. Finally, vessel density and VEGFR-2 expression were assessed histologically. CEUS indicated a decreasing rBV in both groups over time. VEGFR-2 expression increased in both groups up to Day 7. Towards Day 11, the binding of VEGFR-2-specific microbubbles further increased in controls, but significantly (p = 0.0015) decreased under ASA therapy (2.24 ± 0.46 au vs. 0.54 ± 0.55 au). Immunofluorescence showed a tendency towards lower vessel density under ASA and confirmed the result of molecular ultrasound. Molecular US demonstrated an inhibitory effect of ASA on VEGFR-2 expression accompanied by a tendency towards lower vessel density. Thus, this study suggests the inhibition of angiogenesis via VEGFR-2 downregulation as one of the anti-tumor effects of ASA.


Asunto(s)
Aspirina , Neoplasias , Ratones , Animales , Aspirina/farmacología , Aspirina/uso terapéutico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/tratamiento farmacológico , Ultrasonografía
5.
Nanomedicine ; 48: 102650, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623712

RESUMEN

Biodistribution analyses of nanocarriers are often performed with optical imaging. Though dye tags can interact with transporters, e.g., organic anion transporting polypeptides (OATPs), their influence on biodistribution was hardly studied. Therefore, this study compared tumor cell uptake and biodistribution (in A431 tumor-bearing mice) of four near-infrared fluorescent dyes (AF750, IRDye750, Cy7, DY-750) and dye-labeled poly(N-(2-hydroxypropyl)methacrylamide)-based nanocarriers (dye-pHPMAs). Tumor cell uptake of hydrophobic dyes (Cy7, DY-750) was higher than that of hydrophilic dyes (AF750, IRDye750), and was actively mediated but not related to OATPs. Free dyes' elimination depended on their hydrophobicity, and tumor uptake correlated with blood circulation times. Dye-pHPMAs circulated longer and accumulated stronger in tumors than free dyes. Dye labeling significantly influenced nanocarriers' tumor accumulation and biodistribution. Therefore, low-interference dyes and further exploration of dye tags are required to achieve the most unbiased results possible. In our assessment, AF750 and IRDye750 best qualified for labeling hydrophilic nanocarriers.


Asunto(s)
Portadores de Fármacos , Neoplasias , Ratones , Animales , Portadores de Fármacos/química , Distribución Tisular , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Colorantes Fluorescentes/química , Imagen Óptica , Sesgo , Línea Celular Tumoral
6.
Mol Imaging Biol ; 24(2): 288-297, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34845660

RESUMEN

PURPOSE: Publication numbers reporting that ultrasound can stimulate immune reactions in tumors steadily increase. However, the presented data are partially conflicting, and mechanisms are difficult to identify from single publications. These shortcomings can be addressed by a systematic review and meta-analysis of current literature. As a first step, we here present the methodology and protocol for a systematic review to answer the following research question: Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound? PROCEDURES: We designed a protocol to perform a systematic review and meta-analysis. The suitability of the protocol to detect and sort relevant literature was tested using a subset of publications. We extracted study characteristics, ultrasound parameters, and study outcomes to pre-evaluate the differences between publications and present the data as a scoping review. RESULTS: From 6532 publications detected by our preliminary literature search, 320 were selected for testing our systematic review protocol. Of the latter, 15 publications were eligible for data extraction. There, we found large differences between study characteristics (e.g., tumor type, age) and ultrasound settings (e.g., wavelength 0.5-9.5 MHz, acoustic pressure 0.0001-15,000 W/cm2). Finally, study outcomes included reports on cells of the innate (e.g., dendritic cells, macrophages) and adaptive immune system (e.g., CD8-/CD4-positive T cells). CONCLUSION: We designed a protocol to identify relevant literature and perform a systematic review and meta-analysis. The differences between extracted features between publications show the necessity for a comprehensive search and selection strategy in the systematic review to get a complete overview of the literature. Meta-analyses of the extracted outcomes can then enable evidence-based conclusions.


Asunto(s)
Neoplasias , Humanos , Metaanálisis como Asunto , Neoplasias/diagnóstico por imagen , Revisiones Sistemáticas como Asunto , Ultrasonografía
7.
J Exp Clin Cancer Res ; 40(1): 288, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517894

RESUMEN

BACKGROUND: Patients with advanced colorectal cancer (CRC) have a poor prognosis. Combinations of immunotherapies and anti-angiogenic agents are currently being evaluated in clinical trials. In this study, the multikinase inhibitor regorafenib (REG) was combined with an anti-programmed cell death protein 1 (aPD1) antibody in syngeneic murine microsatellite-stable (MSS) CT26 and hypermutated MC38 colon cancer models to gain mechanistic insights into potential drug synergism. METHODS: Growth and progression of orthotopic CT26 and subcutaneous MC38 colon cancers were studied under treatment with varying doses of REG and aPD1 alone or in combination. Sustained effects were studied after treatment discontinuation. Changes in the tumor microenvironment were assessed by dynamic contrast-enhanced MRI, and histological and molecular analyses. RESULTS: In both models, REG and aPD1 combination therapy significantly improved anti-tumor activity compared with single agents. However, in the CT26 model, the additive benefit of aPD1 only became apparent after treatment cessation. The combination treatment efficiently prevented tumor regrowth and completely suppressed liver metastasis, whereas the anti-tumorigenic effects of REG alone were abrogated soon after drug discontinuation. During treatment, REG significantly reduced the infiltration of immunosuppressive macrophages and regulatory T (Treg) cells into the tumor microenvironment. aPD1 significantly enhanced intratumoral IFNγ levels. The drugs synergized to induce sustained M1 polarization and durable reduction of Treg cells, which can explain the sustained tumor suppression. CONCLUSIONS: This study highlights the synergistic immunomodulatory effects of REG and aPD1 combination therapy in mediating a sustained inhibition of colon cancer regrowth, strongly warranting clinical evaluation in CRC, including MSS tumors.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Inmunoterapia/métodos , Compuestos de Fenilurea/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Piridinas/uso terapéutico , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Ratones , Compuestos de Fenilurea/farmacología , Piridinas/farmacología
8.
Contrast Media Mol Imaging ; 2021: 6676337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007252

RESUMEN

Methods: For apoptosis imaging, the near-infrared probe Annexin Vivo750 was used in combination with fluorescence molecular tomography and microcomputed tomography (FMT/µCT). Glucose metabolism was assessed using 18F-FDG-PET/CT. Five groups of nude mice bearing lung cancer xenografts (A549) were investigated: (i) untreated controls and two groups after (ii) cytotoxic (carboplatin) or (iii) anti-angiogenic (sunitinib) treatment for four and nine days, respectively. Imaging data were validated by immunohistochemistry. Results: In response to carboplatin treatment, an inverse relation was found between the change in glucose metabolism and apoptosis in A549 tumors. Annexin Vivo showed a continually increasing tumor accumulation, while the tumor-to-muscle ratio of 18F-FDG continuously decreased during therapy. Immunohistochemistry revealed a significantly higher tumor apoptosis (p=0.007) and a minor but not significant reduction in vessel density only at day 9 of carboplatin therapy. Interestingly, during anti-angiogenic treatment there was an early drop in the tumor-to-muscle ratio between days 0 and 4, followed by a subsequent minor decrease (18F-FDG tumor-to-muscle-ratio: 1.9 ± 0.4; day 4: 1.1 ± 0.2; day 9: 1.0 ± 0.2; p=0.021 and p=0.001, respectively). The accumulation of Annexin Vivo continuously increased over time (Annexin Vivo: untreated: 53.7 ± 36.4 nM; day 4: 87.2 ± 53.4 nM; day 9: 115.1 ± 103.7 nM) but failed to display the very prominent early induction of tumor apoptosis that was found by histology already at day 4 (TUNEL: p=0.0036) together with a decline in vessel density (CD31: p=0.004), followed by no significant changes thereafter. Conclusion: Both molecular imaging approaches enable visualizing the effects of cytotoxic and anti-angiogenic therapy in A549 tumors. However, the early and strong tumor apoptosis induced by the anti-angiogenic agent sunitinib was more sensitively and reliably captured by monitoring of the glucose metabolism as compared to Annexin V-based apoptosis imaging.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Imagen Óptica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Inhibidores de la Angiogénesis/farmacología , Animales , Anexina A5/química , Anexina A5/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fluorodesoxiglucosa F18/farmacología , Glucosa/metabolismo , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Ratones
9.
Cell Death Dis ; 11(5): 343, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393755

RESUMEN

Lipid-based RNA nanocarriers have been recently accepted as a novel therapeutic option in humans, thus increasing the therapeutic options for patients. Tailored nanomedicines will enable to treat chronic liver disease (CLD) and end-stage liver cancer, disorders with high mortality and few treatment options. Here, we investigated the curative potential of gene therapy of a key molecule in CLD, the c-Jun N-terminal kinase-2 (Jnk2). Delivery to hepatocytes was achieved using a lipid-based clinically employable siRNA formulation that includes a cationic aminolipid to knockdown Jnk2 (named siJnk2). After assessing the therapeutic potential of siJnk2 treatment, non-invasive imaging demonstrated reduced apoptotic cell death and improved hepatocarcinogenesis was evidenced by improved liver parenchyma as well as ameliorated markers of hepatic damage, reduced fibrogenesis in 1-year-old mice. Strikingly, chronic siJnk2 treatment reduced premalignant nodules, indicative of tumor initiation. Furthermore, siJnk2 treatment led to a significant activation of the immune cell compartment. In conclusion, Jnk2 knockdown in hepatocytes ameliorated hepatitis, fibrogenesis, and initiation of hepatocellular carcinoma (HCC), and hence might be a suitable therapeutic option, to define novel molecular targets for precision medicine in CLD.


Asunto(s)
Técnicas de Transferencia de Gen , Hepatocitos/enzimología , Lípidos/química , Cirrosis Hepática/terapia , Neoplasias Hepáticas/prevención & control , Hígado/enzimología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , ARN Interferente Pequeño/metabolismo , Tratamiento con ARN de Interferencia , Animales , Apoptosis , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Hepatocitos/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/patología , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética , Nanopartículas , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
10.
Mol Imaging Biol ; 22(3): 623-633, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31396770

RESUMEN

PURPOSE: Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity. PROCEDURES: Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters. RESULTS: In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology. CONCLUSION: [68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bacteriocinas , Radioisótopos de Galio , Riñón/efectos de los fármacos , Riñón/diagnóstico por imagen , Hígado/efectos de los fármacos , Hígado/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Péptidos , Acetatos/química , Acetatos/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bacteriocinas/química , Bacteriocinas/farmacocinética , Busulfano/administración & dosificación , Cisplatino/administración & dosificación , Doxorrubicina/administración & dosificación , Femenino , Radioisótopos de Galio/química , Radioisótopos de Galio/farmacocinética , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Neoplasias/patología , Péptidos/química , Péptidos/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular
11.
Front Physiol ; 10: 904, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379606

RESUMEN

The liver has a unique regenerative capability upon injury or partial resection. The regeneration process comprises a complex interplay between parenchymal and non-parenchymal cells and is tightly regulated at different scales. Thus, we investigated liver regeneration using multi-scale methods by combining non-invasive imaging with immunohistochemical analyses. In this context, non-invasive imaging can provide quantitative data of processes involved in liver regeneration at organ and body scale. We quantitatively measured liver volume recovery after 70% partial hepatectomy (PHx) by micro computed tomography (µCT) and investigated changes in the density of CD68+ macrophages by fluorescence-mediated tomography (FMT) combined with µCT using a newly developed near-infrared fluorescent probe. In addition, angiogenesis and tissue-resident macrophages were analyzed by immunohistochemistry. Based on the results, a model describing liver regeneration and the interactions between different cell types was established. In vivo analysis of liver volume regeneration over 21 days after PHx by µCT imaging demonstrated that the liver volume rapidly increased after PHx reaching a maximum at day 14 and normalizing until day 21. An increase in CD68+ macrophage density in the liver was detected from day 4 to day 8 by combined FMT-µCT imaging, followed by a decline towards control levels between day 14 and day 21. Immunohistochemistry revealed the highest angiogenic activity at day 4 after PHx that continuously declined thereafter, whereas the density of tissue-resident CD169+ macrophages was not altered. The simulated time courses for volume recovery, angiogenesis and macrophage density reflect the experimental data describing liver regeneration after PHx at organ and tissue scale. In this context, our study highlights the importance of non-invasive imaging for acquiring quantitative organ scale data that enable modeling of liver regeneration.

12.
Photochem Photobiol Sci ; 17(5): 617-621, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29687129

RESUMEN

Photoacoustic imaging presents an innocuous imaging modality with good penetration depth and resolution. To use this modality for detection and imaging of pathological sites, new imaging probes need to be developed to enhance the contrast over endogenous sonophores. These contrast agents should specifically bind to the site of interest, be non-toxic and be cleared renally if applied intravenously. Small organic dyes with absorption in the near infrared spectrum often exhibit good photoacoustic response. However, such dyes are often not water soluble or they are cytotoxic. Here, we present a novel PEGylated sonophore based on diketopyrrolopyrrole (DPP), which overcomes these limitations and can be functionalized with desired biological recognition motifs using thiol-yne click chemistry. Proof of concept is demonstrated by functionalizing the DPP-based probe with an RGD peptide, resulting in specific binding to endothelial (HUVEC) cells and an efficient photoacoustic response.

13.
J Nucl Med ; 59(5): 740-746, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29496981

RESUMEN

Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential.


Asunto(s)
Medios de Contraste/química , Sistemas de Liberación de Medicamentos , Oscilometría , Terapia por Ultrasonido , Ultrasonografía , Diagnóstico por Imagen de Elasticidad , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Inflamación , Imagen por Resonancia Magnética , Microburbujas , Reproducibilidad de los Resultados
14.
Neoplasia ; 19(11): 896-907, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28938160

RESUMEN

Vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-targeted therapies predominantly affect nascent, immature tumor vessels. Since platelet-derived growth factor receptor (PDGFR) blockade inhibits vessel maturation and thus increases the amount of immature tumor vessels, we evaluated whether the combined PDGFR inhibition by nilotinib and VEGFR2 blockade by DC101 has synergistic therapy effects in a desmoplastic breast cancer xenograft model. In this context, besides immunohistological evaluation, molecular ultrasound imaging with BR55, the clinically used VEGFR2-targeted microbubbles, was applied to monitor VEGFR2-positive vessels noninvasively and to assess the therapy effects on tumor angiogenesis. DC101 treatment alone inhibited tumor angiogenesis, resulting in lower tumor growth and in significantly lower vessel density than in the control group after 14 days of therapy. In contrast, nilotinib inhibited vessel maturation but enhanced VEGFR2 expression, leading to markedly increased tumor volumes and a significantly higher vessel density. The combination of both drugs led to an almost similar tumor growth as in the DC101 treatment group, but VEGFR2 expression and microvessel density were higher and comparable to the controls. Further analyses revealed significantly higher levels of tumor cell-derived VEGF in nilotinib-treated tumors. In line with this, nilotinib, especially in low doses, induced an upregulation of VEGF and IL-6 mRNA in the tumor cells in vitro, thus providing an explanation for the enhanced angiogenesis observed in nilotinib-treated tumors in vivo. These findings suggest that nilotinib inhibits vessel maturation but counteracts the effects of antiangiogenic co-therapy by enhancing VEGF expression by the tumor cells and stimulating tumor angiogenesis.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neovascularización Patológica/inducido químicamente , Pirimidinas/toxicidad , Pirimidinas/uso terapéutico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Distribución Aleatoria , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis
15.
Nat Commun ; 8(1): 470, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883395

RESUMEN

Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Animales , Materiales Biocompatibles/química , Células Cultivadas , Cisteína/química , Diagnóstico por Imagen/métodos , Fluorescencia , Peróxido de Hidrógeno/química , Imidazoles/química , Macrófagos/efectos de los fármacos , Ratones , Microscopía Confocal/métodos , Nanopartículas/uso terapéutico , Polímeros/química , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
16.
Nano Lett ; 17(8): 4665-4674, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28715227

RESUMEN

Riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) are highly upregulated in many tumor cells, tumor stem cells, and tumor neovasculature, which makes them attractive targets for nanomedicines. Addressing cells in different tumor compartments requires drug carriers, which are not only able to accumulate via the EPR effect but also to extravasate, target specific cell populations, and get internalized by cells. Reasoning that antibodies are among the most efficient targeting systems developed by nature, we consider their size (∼10-15 nm) to be ideal for balancing passive and active tumor targeting. Therefore, small, short-circulating (10 kDa, ∼7 nm, t1/2 ∼ 1 h) and larger, longer-circulating (40 kDa, ∼13 nm, t1/2 ∼ 13 h) riboflavin-targeted branched PEG polymers were synthesized, and their biodistribution and target site accumulation were evaluated in mice bearing angiogenic squamous cell carcinoma (A431) and desmoplastic prostate cancer (PC3) xenografts. The tumor accumulation of the 10 kDa PEG was characterized by rapid intercompartmental exchange and significantly improved upon active targeting with riboflavin (RF). The 40 kDa PEG accumulated in tumors four times more efficiently than the small polymer, but its accumulation did not profit from active RF-targeting. However, RF-targeting enhanced the cellular internalization in both tumor models and for both polymer sizes. Interestingly, the nanocarriers' cell-uptake in tumors was not directly correlated with the extent of accumulation. For example, in both tumor models the small RF-PEG accumulated much less strongly than the large passively targeted PEG but showed significantly higher intracellular amounts 24 h after iv administration. Additionally, the size of the polymer determined its preferential uptake by different tumor cell compartments: the 10 kDa RF-PEGs most efficiently targeted cancer cells, whereas the highest uptake of the 40 kDa RF-PEGs was observed in tumor-associated macrophages. These findings imply that drug carriers with sizes in the range of therapeutic antibodies show balanced properties with respect to passive accumulation, tissue penetration, and active targeting. Besides highlighting the potential of RF-mediated (cancer) cell targeting, we show that strong tumor accumulation does not automatically mean high cellular uptake and that the nanocarriers' size plays a critical role in cell- and compartment-specific drug targeting.


Asunto(s)
Portadores de Fármacos/química , Polímeros/química , Neoplasias de la Próstata/tratamiento farmacológico , Riboflavina/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Xenoinjertos , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Propiedades de Superficie , Distribución Tisular
18.
Angiogenesis ; 19(2): 245-254, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26902100

RESUMEN

Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Integrina alfaVbeta3/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados
19.
Mol Imaging Biol ; 18(2): 180-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26391990

RESUMEN

PURPOSE: Our objective was to determine the lowest diagnostically effective dose for E-selectin-targeted poly n-butyl cyanoacrylate (PBCA)-shelled microbubbles and to apply it to monitor antiangiogenic therapy effects. PROCEDURES: PBCA-shelled microbubbles (MBs) coupled to an E-selectin-specific peptide were applied in mice carrying MLS or A431 carcinoma xenografts scaling down the MB dosage to the lowest level where binding could be examined with a 18-MHz small animal ultrasound transducer. Differences in E-selectin expression in the two carcinoma xenografts were confirmed by enzyme-linked immunosorbent assay (ELISA). In addition, MLS tumor-bearing mice under antiangiogenic therapy were monitored using E-selectin-targeted MBs at the lowest applicable dose. Therapy effects on tumor vascularization were verified by immunohistological analyses. RESULTS: The minimally required dosage was 7 × 10(7) MBs/kg body weight. This dosage was sufficient to enable E-selectin detection in high E-selectin-expressing MLS tumors, while low E-selectin-expressing A431 tumors required almost 2.5-fold higher doses. At the dose of 7 × 10(7) MBs/kg body weight, a decrease in E-selectin MB binding under antiangiogenic therapy could be assessed (being significant after 3 days of treatment; p < 0.0001), which was in line with the significant drop in E-selectin-positive area fractions that was found histologically (p < 0.05). CONCLUSIONS: Molecular ultrasound imaging with our E-selectin-targeted MB and therapy monitoring was possible down to a dose of 7 × 10(7) MBs/kg body weight (equates to 66 µg PBCA/kg and 4.6 mg PBCA/70 kg). Improvements in choice of targets, MB composition, and other MB detection methods may improve sensitivity and lead to reliable detection results of clinically transferrable MBs at even lower dosage levels.


Asunto(s)
Selectina E/metabolismo , Enbucrilato/química , Microburbujas , Imagen Molecular/métodos , Ultrasonografía/métodos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones Desnudos , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Unión Proteica , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Radiology ; 278(2): 430-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26313618

RESUMEN

PURPOSE: To assess the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted and nontargeted ultrasonography (US) to depict antiangiogenic therapy effects and to investigate whether first-pass kinetics obtained with VEGFR2-targeted microbubbles provide independent data about tumor vascularization. MATERIALS AND METHODS: Governmental approval was obtained for animal experiments. Vascularization in response to anti-vascular endothelial growth factor receptor or vehicle-control treatment (10 per group) in HaCaT-ras A-5RT3 xenografts was longitudinally assessed in mice by means of first-pass kinetics of nontargeted microbubbles (BR1, BR38; Bracco, Geneva, Switzerland) and VEGFR2-targeted microbubbles (BR55, Bracco) before and 4, 7, and 14 days after therapy. VEGFR2 expression was determined 8 minutes after BR55 injection with destruction-replenishment analysis. US data were validated with immunohistochemistry. Significant differences were evaluated with the Mann-Whitney test. RESULTS: First-pass analysis with BR1, BR38, and BR55 showed similar tendencies toward decreasing vascularization, with a stronger decrease in tumors treated with anti-VEGF antibody. The median signal intensity (in arbitrary units [au]) of anti-VEGF antibody-treated versus control tumors at day 14 was as follows: BR1, 5.2 au (interquartile range [IQR], 3.2 au) vs 11.3 au (IQR, 10.0 au), respectively; BR38, 6.2 au (IQR, 3.5) vs 10.0 au (IQR, 7.8); and BR55, 9.5 au (IQR, 6.0 au) vs 13.8 au (IQR, 9.8) (P = .0230). VEGFR2 assessment with BR55 demonstrated significant differences between both groups throughout the therapy period (median signal intensity of anti-VEGF antibody-treated vs control tumors: 0.04 au [IQR, 0.1 au] vs 0.14 au [IQR, 0.08 au], respectively, at day 4, P = .0058; 0.04 au [IQR, 0.06 au] vs 0.13 au [IQR, 0.09 au] at day 7, P = .0058; and 0.06 au [IQR, 0.11 au] vs 0.16 au [IQR, 0.15 au] at day 14, P = .0247). Immunohistochemistry confirmed the lower microvessel density and VEGFR2-positive area fraction in tumors treated with anti-VEGF antibody. CONCLUSION: Antiangiogenic therapy effects were detected earlier and more distinctly with VEGFR2-targeted US than with functional US. First-pass analyses with BR55, BR38, and BR1 revealed similar results, with a decrease in vascularization during therapy. Functional data showed that BR55 is not strongly affected by early binding of the microbubbles to VEGFR2. Thus, functional and molecular imaging of angiogenesis can be performed with BR55 within one examination.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/tratamiento farmacológico , Microburbujas , Imagen Molecular/métodos , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Medios de Contraste , Femenino , Xenoinjertos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Ratones Desnudos , Distribución Aleatoria , Células Tumorales Cultivadas , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...