Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076514

RESUMEN

Electron cryomicroscopy (cryo-EM) is an imaging technique widely used in structural biology to determine the three-dimensional structure of biological molecules from noisy two-dimensional projections with unknown orientations. As the typical pipeline involves processing large amounts of data, efficient algorithms are crucial for fast and reliable results. The stochastic gradient descent (SGD) algorithm has been used to improve the speed of ab initio reconstruction, which results in a first, low-resolution estimation of the volume representing the molecule of interest, but has yet to be applied successfully in the high-resolution regime, where expectation-maximization algorithms achieve state-of-the-art results, at a high computational cost. In this article, we investigate the conditioning of the optimization problem and show that the large condition number prevents the successful application of gradient descent-based methods at high resolution. Our results include a theoretical analysis of the condition number of the optimization problem in a simplified setting where the individual projection directions are known, an algorithm based on computing a diagonal preconditioner using Hutchinson's diagonal estimator, and numerical experiments showing the improvement in the convergence speed when using the estimated preconditioner with SGD. The preconditioned SGD approach can potentially enable a simple and unified approach to ab initio reconstruction and high-resolution refinement with faster convergence speed and higher flexibility, and our results are a promising step in this direction.

2.
J Mol Biol ; 435(9): 168020, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36863660

RESUMEN

Macromolecules change their shape (conformation) in the process of carrying out their functions. The imaging by cryo-electron microscopy of rapidly-frozen, individual copies of macromolecules (single particles) is a powerful and general approach to understanding the motions and energy landscapes of macromolecules. Widely-used computational methods already allow the recovery of a few distinct conformations from heterogeneous single-particle samples, but the treatment of complex forms of heterogeneity such as the continuum of possible transitory states and flexible regions remains largely an open problem. In recent years there has been a surge of new approaches for treating the more general problem of continuous heterogeneity. This paper surveys the current state of the art in this area.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Conformación Molecular , Movimiento (Física)
3.
ArXiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36994155

RESUMEN

Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological systems. In this case study, we qualitatively examine the amortization properties of a VAE used in biological applications. We find that in this application the encoder bears a qualitative resemblance to more traditional explicit representation of latent variables.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38435710

RESUMEN

Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathematically straightforward and unavoidable in the general case, and it is only one of several similar effects. While this is not always problematic, we provide an example of an arguably standard and harmless data processing procedure where this effect leads to an incorrect answer to a seemingly simple question. Although we focus on manifold learning, these issues apply broadly to dimensionality reduction and unsupervised learning.

5.
Proc Mach Learn Res ; 151: 5949-5986, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36789101

RESUMEN

Markov Chain Monte Carlo (MCMC) methods are a powerful tool for computation with complex probability distributions. However the performance of such methods is critically dependent on properly tuned parameters, most of which are difficult if not impossible to know a priori for a given target distribution. Adaptive MCMC methods aim to address this by allowing the parameters to be updated during sampling based on previous samples from the chain at the expense of requiring a new theoretical analysis to ensure convergence. In this work we extend the convergence theory of adaptive MCMC methods to a new class of methods built on a powerful class of parametric density estimators known as normalizing flows. In particular, we consider an independent Metropolis-Hastings sampler where the proposal distribution is represented by a normalizing flow whose parameters are updated using stochastic gradient descent. We explore the practical performance of this procedure on both synthetic settings and in the analysis of a physical field system, and compare it against both adaptive and non-adaptive MCMC methods.

6.
IUCrJ ; 8(Pt 6): 992-1005, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804551

RESUMEN

Structural biology has evolved greatly due to the advances introduced in fields like electron microscopy. This image-capturing technique, combined with improved algorithms and current data processing software, allows the recovery of different conformational states of a macromolecule, opening new possibilities for the study of its flexibility and dynamic events. However, the ensemble analysis of these different conformations, and in particular their placement into a common variable space in which the differences and similarities can be easily recognized, is not an easy matter. To simplify the analysis of continuous heterogeneity data, this work proposes a new automatic algorithm that relies on a mathematical basis defined over the sphere to estimate the deformation fields describing conformational transitions among different structures. Thanks to the approximation of these deformation fields, it is possible to describe the forces acting on the molecules due to the presence of different motions. It is also possible to represent and compare several structures in a low-dimensional mapping, which summarizes the structural characteristics of different states. All these analyses are integrated into a common framework, providing the user with the ability to combine them seamlessly. In addition, this new approach is a significant step forward compared with principal component analysis and normal mode analysis of cryo-electron microscopy maps, avoiding the need to select components or modes and producing localized analysis.

7.
Proc Mach Learn Res ; 139: 1072-1081, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35983520

RESUMEN

Riemannian manifold Hamiltonian Monte Carlo is traditionally carried out using the generalized leapfrog integrator. However, this integrator is not the only choice and other integrators yielding valid Markov chain transition operators may be considered. In this work, we examine the implicit midpoint integrator as an alternative to the generalized leapfrog integrator. We discuss advantages and disadvantages of the implicit midpoint integrator for Hamiltonian Monte Carlo, its theoretical properties, and an empirical assessment of the critical attributes of such an integrator for Hamiltonian Monte Carlo: energy conservation, volume preservation, and reversibility. Empirically, we find that while leapfrog iterations are faster, the implicit midpoint integrator has better energy conservation, leading to higher acceptance rates, as well as better conservation of volume and better reversibility, arguably yielding a more accurate sampling procedure.

8.
Inverse Probl ; 36(4)2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38304203

RESUMEN

Cryo-electron microscopy (cryo-EM), the subject of the 2017 Nobel Prize in Chemistry, is a technology for obtaining 3-D reconstructions of macromolecules from many noisy 2-D projections of instances of these macromolecules, whose orientations and positions are unknown. These molecules are not rigid objects, but flexible objects involved in dynamical processes. The different conformations are exhibited by different instances of the macromolecule observed in a cryo-EM experiment, each of which is recorded as a particle image. The range of conformations and the conformation of each particle are not known a priori; one of the great promises of cryo-EM is to map this conformation space. Remarkable progress has been made in reconstructing rigid molecules based on homogeneous samples of molecules in spite of the unknown orientation of each particle image and significant progress has been made in recovering a few distinct states from mixtures of rather distinct conformations, but more complex heterogeneous samples remain a major challenge. We introduce the "hyper-molecule" theoretical framework for modeling structures across different states of heterogeneous molecules, including continuums of states. The key idea behind this framework is representing heterogeneous macromolecules as high-dimensional objects, with the additional dimensions representing the conformation space. This idea is then refined to model properties such as localized heterogeneity. In addition, we introduce an algorithmic framework for reconstructing such heterogeneous objects from experimental data using a Bayesian formulation of the problem and Markov chain Monte Carlo (MCMC) algorithms to address the computational challenges in recovering these high dimensional hyper-molecules. We demonstrate these ideas in a preliminary prototype implementation, applied to synthetic data.

9.
Inverse Probl ; 36(6)2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38274355

RESUMEN

Let 𝒢 be a compact group and let fij∈C(𝒢). We define the Non-Unique Games (NUG) problem as finding g1,…,gn∈𝒢 to minimize ∑i,j=1nfijgigj-1. We introduce a convex relaxation of the NUG problem to a semidefinite program (SDP) by taking the Fourier transform of fij over 𝒢. The NUG framework can be seen as a generalization of the little Grothendieck problem over the orthogonal group and the Unique Games problem and includes many practically relevant problems, such as the maximum likelihood estimator to registering bandlimited functions over the unit sphere in d-dimensions and orientation estimation of noisy cryo-Electron Microscopy (cryo-EM) projection images. We implement a SDP solver for the NUG cryo-EM problem using the alternating direction method of multipliers (ADMM). Numerical study with synthetic datasets indicate that while our ADMM solver is slower than existing methods, it can estimate the rotations more accurately, especially at low signal-to-noise ratio (SNR).

10.
Nucleic Acids Res ; 45(21): e173, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981893

RESUMEN

With the advent of next generation high-throughput DNA sequencing technologies, omics experiments have become the mainstay for studying diverse biological effects on a genome wide scale. Chromatin immunoprecipitation (ChIP-seq) is the omics technique that enables genome wide localization of transcription factor (TF) binding or epigenetic modification events. Since the inception of ChIP-seq in 2007, many methods have been developed to infer ChIP-target binding loci from the resultant reads after mapping them to a reference genome. However, interpreting these data has proven challenging, and as such these algorithms have several shortcomings, including susceptibility to false positives due to artifactual peaks, poor localization of binding sites and the requirement for a total DNA input control which increases the cost of performing these experiments. We present Ritornello, a new approach for finding TF-binding sites in ChIP-seq, with roots in digital signal processing that addresses all of these problems. We show that Ritornello generally performs equally or better than the peak callers tested and recommended by the ENCODE consortium, but in contrast, Ritornello does not require a matched total DNA input control to avoid false positives, effectively decreasing the sequencing cost to perform ChIP-seq. Ritornello is freely available at https://github.com/KlugerLab/Ritornello.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Factores de Transcripción/metabolismo , Algoritmos , Artefactos , Sitios de Unión , ADN/química , ADN/metabolismo , Motivos de Nucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...