Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 7(3): e242609, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38488790

RESUMEN

Importance: The lack of standardized genetics training in pediatrics residencies, along with a shortage of medical geneticists, necessitates innovative educational approaches. Objective: To compare pediatric resident recognition of Kabuki syndrome (KS) and Noonan syndrome (NS) after 1 of 4 educational interventions, including generative artificial intelligence (AI) methods. Design, Setting, and Participants: This comparative effectiveness study used generative AI to create images of children with KS and NS. From October 1, 2022, to February 28, 2023, US pediatric residents were provided images through a web-based survey to assess whether these images helped them recognize genetic conditions. Interventions: Participants categorized 20 images after exposure to 1 of 4 educational interventions (text-only descriptions, real images, and 2 types of images created by generative AI). Main Outcomes and Measures: Associations between educational interventions with accuracy and self-reported confidence. Results: Of 2515 contacted pediatric residents, 106 and 102 completed the KS and NS surveys, respectively. For KS, the sensitivity of text description was 48.5% (128 of 264), which was not significantly different from random guessing (odds ratio [OR], 0.94; 95% CI, 0.69-1.29; P = .71). Sensitivity was thus compared for real images vs random guessing (60.3% [188 of 312]; OR, 1.52; 95% CI, 1.15-2.00; P = .003) and 2 types of generative AI images vs random guessing (57.0% [212 of 372]; OR, 1.32; 95% CI, 1.04-1.69; P = .02 and 59.6% [193 of 324]; OR, 1.47; 95% CI, 1.12-1.94; P = .006) (denominators differ according to survey responses). The sensitivity of the NS text-only description was 65.3% (196 of 300). Compared with text-only, the sensitivity of the real images was 74.3% (205 of 276; OR, 1.53; 95% CI, 1.08-2.18; P = .02), and the sensitivity of the 2 types of images created by generative AI was 68.0% (204 of 300; OR, 1.13; 95% CI, 0.77-1.66; P = .54) and 71.0% (247 of 328; OR, 1.30; 95% CI, 0.92-1.83; P = .14). For specificity, no intervention was statistically different from text only. After the interventions, the number of participants who reported being unsure about important diagnostic facial features decreased from 56 (52.8%) to 5 (7.6%) for KS (P < .001) and 25 (24.5%) to 4 (4.7%) for NS (P < .001). There was a significant association between confidence level and sensitivity for real and generated images. Conclusions and Relevance: In this study, real and generated images helped participants recognize KS and NS; real images appeared most helpful. Generated images were noninferior to real images and could serve an adjunctive role, particularly for rare conditions.


Asunto(s)
Anomalías Múltiples , Inteligencia Artificial , Cara/anomalías , Enfermedades Hematológicas , Aprendizaje , Enfermedades Vestibulares , Humanos , Niño , Reconocimiento en Psicología , Escolaridad
2.
PLoS Genet ; 20(2): e1011168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412177

RESUMEN

Artificial intelligence (AI) for facial diagnostics is increasingly used in the genetics clinic to evaluate patients with potential genetic conditions. Current approaches focus on one type of AI called Deep Learning (DL). While DL- based facial diagnostic platforms have a high accuracy rate for many conditions, less is understood about how this technology assesses and classifies (categorizes) images, and how this compares to humans. To compare human and computer attention, we performed eye-tracking analyses of geneticist clinicians (n = 22) and non-clinicians (n = 22) who viewed images of people with 10 different genetic conditions, as well as images of unaffected individuals. We calculated the Intersection-over-Union (IoU) and Kullback-Leibler divergence (KL) to compare the visual attentions of the two participant groups, and then the clinician group against the saliency maps of our deep learning classifier. We found that human visual attention differs greatly from DL model's saliency results. Averaging over all the test images, IoU and KL metric for the successful (accurate) clinician visual attentions versus the saliency maps were 0.15 and 11.15, respectively. Individuals also tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians (IoU and KL of clinicians versus non-clinicians were 0.47 and 2.73, respectively). This study shows that humans (at different levels of expertise) and a computer vision model examine images differently. Understanding these differences can improve the design and use of AI tools, and lead to more meaningful interactions between clinicians and AI technologies.


Asunto(s)
Inteligencia Artificial , Computadores , Humanos , Simulación por Computador
3.
Genet Med ; 24(8): 1593-1603, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612590

RESUMEN

Deep learning (DL) is applied in many biomedical areas. We performed a scoping review on DL in medical genetics. We first assessed 14,002 articles, of which 133 involved DL in medical genetics. DL in medical genetics increased rapidly during the studied period. In medical genetics, DL has largely been applied to small data sets of affected individuals (mean = 95, median = 29) with genetic conditions (71 different genetic conditions were studied; 24 articles studied multiple conditions). A variety of data types have been used in medical genetics, including radiologic (20%), ophthalmologic (14%), microscopy (8%), and text-based data (4%); the most common data type was patient facial photographs (46%). DL authors and research subjects overrepresent certain geographic areas (United States, Asia, and Europe). Convolutional neural networks (89%) were the most common method. Results were compared with human performance in 31% of studies. In total, 51% of articles provided data access; 16% released source code. To further explore DL in genomics, we conducted an additional analysis, the results of which highlight future opportunities for DL in medical genetics. Finally, we expect DL applications to increase in the future. To aid data curation, we evaluated a DL, random forest, and rule-based classifier at categorizing article abstracts.


Asunto(s)
Aprendizaje Profundo , Genética Médica , Asia , Genómica , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...