Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1976): 20220711, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703052

RESUMEN

Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fuerza de la Mordida , Cara , Fósiles , Cráneo/anatomía & histología
2.
Interface Focus ; 11(5): 20200083, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34938433

RESUMEN

Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis.

3.
Nat Ecol Evol ; 5(1): 38-45, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168991

RESUMEN

Paranthropus robustus is a small-brained extinct hominin from South Africa characterized by derived, robust craniodental morphology. The most complete known skull of this species is DNH 7 from Drimolen Main Quarry, which differs from P. robustus specimens recovered elsewhere in ways attributed to sexual dimorphism. Here, we describe a new fossil specimen from Drimolen Main Quarry, dated from approximately 2.04-1.95 million years ago, that challenges this view. DNH 155 is a well-preserved adult male cranium that shares with DNH 7 a suite of primitive and derived features unlike those seen in adult P. robustus specimens from other chronologically younger deposits. This refutes existing hypotheses linking sexual dimorphism, ontogeny and social behaviour within this taxon, and clarifies hypotheses concerning hominin phylogeny. We document small-scale morphological changes in P. robustus associated with ecological change within a short time frame and restricted geography. This represents the most highly resolved evidence yet of microevolutionary change within an early hominin species.


Asunto(s)
Hominidae , Animales , Fósiles , Masculino , Filogenia , Cráneo , Sudáfrica
4.
Am J Phys Anthropol ; 170(1): 37-47, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31290149

RESUMEN

OBJECTIVES: The basicranium and face are two integrated bony structures displaying great morphological diversity across primates. Previous studies in hominids determined that the basicranium is composed of two independent modules: the midline basicranium, mostly influenced by brain size, and the lateral basicranium, predominantly associated with facial shape. To better assess how morphological integration impacts the evolution of primate cranial shape diversity, we test to determine whether the relationships found in hominids are retained across the order. MATERIALS AND METHODS: Three-dimensional landmarks (29) were placed on 143 computed tomography scans of six major clades of extant primate crania. We assessed the covariation between midline basicranium, lateral basicranium, face, and endocranial volume using phylogenetically informed partial least squares analyses and phylogenetic generalized least squares models. RESULTS: We found significant integration between lateral basicranium and face and between midline basicranium and face. We also described a significant correlation between midline basicranium and endocranial volume but not between lateral basicranium and endocranial volume. DISCUSSION: Our findings demonstrate a significant and pervasive integration in the craniofacial structures across primates, differing from previous results in hominids. The uniqueness of module organization in hominids may explain this distinction. We found that endocranial volume is significantly integrated to the midline basicranium but not to the lateral basicranium. This finding underlines the significant effect of brain size on the shape of the midline structures of the cranial base in primates. With the covariations linking the studied features defined here, we suggest that future studies should focus on determining the causal links between them.


Asunto(s)
Cefalometría/métodos , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Antropología Física , Huesos Faciales/anatomía & histología , Huesos Faciales/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Análisis de los Mínimos Cuadrados , Cráneo/diagnóstico por imagen , Base del Cráneo/anatomía & histología , Base del Cráneo/diagnóstico por imagen
5.
Proc Biol Sci ; 285(1889)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355715

RESUMEN

The biology of the American horseshoe crab, Limulus polyphemus, is well documented-including its dietary habits, particularly the ability to crush shell with gnathobasic walking appendages-but virtually nothing is known about the feeding biomechanics of this iconic arthropod. Limulus polyphemus is also considered the archetypal functional analogue of various extinct groups with serial gnathobasic appendages, including eurypterids, trilobites and other early arthropods, especially Sidneyia inexpectans from the mid-Cambrian (508 Myr) Burgess Shale of Canada. Exceptionally preserved specimens of S. inexpectans show evidence suggestive of durophagous (shell-crushing) tendencies-including thick gnathobasic spine cuticle and shelly gut contents-but the masticatory capabilities of this fossil species have yet to be compared with modern durophagous arthropods. Here, we use advanced computational techniques, specifically a unique application of 3D finite-element analysis (FEA), to model the feeding mechanics of L. polyphemus and S. inexpectans: the first such analyses of a modern horseshoe crab and a fossil arthropod. Results show that mechanical performance of the feeding appendages in both arthropods is remarkably similar, suggesting that S. inexpectans had similar shell-crushing capabilities to L. polyphemus This biomechanical solution to processing shelly food therefore has a history extending over 500 Myr, arising soon after the first shell-bearing animals. Arrival of durophagous predators during the early phase of animal evolution undoubtedly fuelled the Cambrian 'arms race' that involved a rapid increase in diversity, disparity and abundance of biomineralized prey species.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/fisiología , Dieta , Fósiles , Animales , Fenómenos Biomecánicos , Colombia Británica , Biología Computacional , Extremidades/anatomía & histología , Extremidades/fisiología , Conducta Alimentaria , Fósiles/anatomía & histología , Cangrejos Herradura/anatomía & histología , Cangrejos Herradura/fisiología
6.
Proc Biol Sci ; 285(1881)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29925620

RESUMEN

Increasing body size is accompanied by facial elongation across a number of mammalian taxa. This trend forms the basis of a proposed evolutionary rule, cranial evolutionary allometry (CREA). However, facial length has also been widely associated with the varying mechanical resistance of foods. Here, we combine geometric morphometrics and computational biomechanical analyses to determine whether evolutionary allometry or feeding ecology have been dominant influences on facial elongation across 16 species of kangaroos and relatives (Macropodiformes). We found no support for an allometric trend. Nor was craniofacial morphology strictly defined by dietary categories, but rather associated with a combination of the mechanical properties of vegetation types and cropping behaviours used to access them. Among species examined here, shorter muzzles coincided with known diets of tough, resistant plant tissues, accessed via active slicing by the anterior dentition. This morphology consistently resulted in increased mechanical efficiency and decreased bone deformation during incisor biting. Longer muzzles, by contrast, aligned with softer foods or feeding behaviours invoking cervical musculature that circumvent the need for hard biting. These findings point to a potential for craniofacial morphology to predict feeding ecology in macropodiforms, which may be useful for species management planning and for inferring palaeoecology.


Asunto(s)
Conducta Alimentaria , Macropodidae/anatomía & histología , Macropodidae/fisiología , Cráneo/anatomía & histología , Animales , Fenómenos Biomecánicos , Cara/anatomía & histología , Tamaño de los Órganos
7.
Proc Biol Sci ; 285(1876)2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29618551

RESUMEN

Three adaptive hypotheses have been forwarded to explain the distinctive Neanderthal face: (i) an improved ability to accommodate high anterior bite forces, (ii) more effective conditioning of cold and/or dry air and, (iii) adaptation to facilitate greater ventilatory demands. We test these hypotheses using three-dimensional models of Neanderthals, modern humans, and a close outgroup (Homo heidelbergensis), applying finite-element analysis (FEA) and computational fluid dynamics (CFD). This is the most comprehensive application of either approach applied to date and the first to include both. FEA reveals few differences between H. heidelbergensis, modern humans, and Neanderthals in their capacities to sustain high anterior tooth loadings. CFD shows that the nasal cavities of Neanderthals and especially modern humans condition air more efficiently than does that of H. heidelbergensis, suggesting that both evolved to better withstand cold and/or dry climates than less derived Homo We further find that Neanderthals could move considerably more air through the nasal pathway than could H. heidelbergensis or modern humans, consistent with the propositions that, relative to our outgroup Homo, Neanderthal facial morphology evolved to reflect improved capacities to better condition cold, dry air, and, to move greater air volumes in response to higher energetic requirements.


Asunto(s)
Cara/anatomía & histología , Hombre de Neandertal/anatomía & histología , Adaptación Fisiológica , Animales , Fuerza de la Mordida , Clima , Simulación por Computador , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Humanos , Cavidad Nasal/anatomía & histología , Cavidad Nasal/fisiología , Hombre de Neandertal/fisiología
8.
J Hum Evol ; 118: 43-55, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606202

RESUMEN

The basicranium and facial skeleton are two integrated structures displaying great morphological diversity across primates. Previous studies focusing on limited taxonomic samples have demonstrated that morphological integration has a significant impact on the evolution of these structures. However, this influence is still poorly understood. A more complete understanding of craniofacial integration across primates has important implications for functional hypotheses of primate evolution. In the present study, we analyzed a large sample of primate species to assess how integration affects the relationship between basicranial and facial evolutionary pathways across the order. First, we quantified integration and modularity between basicranium and face using phylogenetically-informed partial least squares analyses. Then, we defined the influence of morphological integration between these structures on rates of evolution, using a time-calibrated phylogenetic tree, and on disparity through time, comparing the morphological disparity across the tree with that expected under a pure Brownian process. Finally, we assessed the correlation between the basicranium and face, and three factors purported to have an important role in shaping these structures during evolution: endocranial volume, positional behavior (i.e., locomotion and posture), and diet. Our findings show that the face and basicranium, despite being highly integrated, display significantly different evolutionary rates. However, our results demonstrate that morphological integration impacted shape disparity through time. We also found that endocranial volume and positional behavior are important drivers of cranial shape evolution, partly affected by morphological integration.


Asunto(s)
Evolución Biológica , Cara/anatomía & histología , Primates/anatomía & histología , Base del Cráneo/anatomía & histología , Animales , Dieta , Femenino , Locomoción , Masculino , Primates/fisiología
9.
PLoS One ; 13(1): e0190689, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324822

RESUMEN

We analyzed feeding biomechanics in pitheciine monkeys (Pithecia, Chiropotes, Cacajao), a clade that specializes on hard-husked unripe fruit (sclerocarpy) and resistant seeds (seed predation). We tested the hypothesis that pitheciine crania are well-suited to generate and withstand forceful canine and molar biting, with the prediction that they generate bite forces more efficiently and better resist masticatory strains than the closely-related Callicebus, which does not specialize on unripe fruits and/or seeds. We also tested the hypothesis that Callicebus-Pithecia-Chiropotes-Cacajao represent a morphocline of increasing sclerocarpic specialization with respect to biting leverage and craniofacial strength, consistent with anterior dental morphology. We found that pitheciines have higher biting leverage than Callicebus and are generally more resistant to masticatory strain. However, Cacajao was found to experience high strain magnitudes in some facial regions. We therefore found limited support for the morphocline hypothesis, at least with respect to the mechanical performance metrics examined here. Biting leverage in Cacajao was nearly identical (or slightly less than) in Chiropotes and strain magnitudes during canine biting were more likely to follow a Cacajao-Chiropotes-Pithecia trend of increasing strength, in contrast to the proposed morphocline. These results could indicate that bite force efficiency and derived anterior teeth were selected for in pitheciines at the expense of increased strain magnitudes. However, our results for Cacajao potentially reflect reduced feeding competition offered by allopatry with other pitheciines, which allows Cacajao species to choose from a wider variety of fruits at various stages of ripeness, leading to reduction in the selection for robust facial features. We also found that feeding biomechanics in sympatric Pithecia and Chiropotes are consistent with data on food structural properties and observations of dietary niche separation, with the former being well-suited for the regular molar crushing of hard seeds and the latter better adapted for breaching hard fruits.


Asunto(s)
Dieta , Ecosistema , Conducta Alimentaria , Masticación , Primates/fisiología , Semillas , Animales
10.
J Hum Evol ; 113: 1-9, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29054159

RESUMEN

From the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies.


Asunto(s)
Foramen Magno/anatomía & histología , Fósiles , Hominidae/anatomía & histología , Locomoción , Animales , Femenino , Foramen Magno/fisiología , Hominidae/fisiología , Humanos
11.
Anat Rec (Hoboken) ; 300(1): 171-195, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28000396

RESUMEN

Australopiths exhibit a number of derived facial features that are thought to strengthen the face against high and/or repetitive loads associated with a diet that included mechanically challenging foods. Here, we use finite element analysis (FEA) to test hypotheses related to the purported strengthening role of the zygomatic root and "anterior pillar" in australopiths. We modified our previously constructed models of Sts 5 (Australopithecus africanus) and MH1 (A. sediba) to differ in the morphology of the zygomatic root, including changes to both the shape and positioning of the zygomatic root complex, in addition to creating variants of Sts 5 lacking anterior pillars. We found that both an expanded zygomatic root and the presence of "anterior pillars" reinforce the face against feeding loads. We also found that strain orientations are most compatible with the hypothesis that the pillar evolved to resist loads associated with premolar loading, and that this morphology has an ancillary effect of strengthening the face during all loading regimes. These results provide support for the functional hypotheses. However, we found that an anteriorly positioned zygomatic root increases strain magnitudes even in models with an inflated/reinforced root complex. These results suggest that an anteriorly placed zygomatic root complex evolved to enhance the efficiency of bite force production while facial reinforcement features, such as the anterior pillar and the expanded zygomatic root, may have been selected for in part to compensate for the weakening effect of this facial configuration. Anat Rec, 300:171-195, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hominidae/anatomía & histología , Hominidae/fisiología , Masticación/fisiología , Cráneo/fisiología , Cigoma/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Dieta , Conducta Alimentaria/fisiología , Análisis de Elementos Finitos , Modelos Teóricos , Cráneo/anatomía & histología , Cigoma/anatomía & histología
12.
Anat Rec (Hoboken) ; 299(12): 1753-1778, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27870351

RESUMEN

The craniofacial skeleton is often described in the clinical literature as being comprised of vertical bony pillars, which transmit forces from the toothrow to the neurocranium as axial compressive stresses, reinforced transversely by buttresses. Here, we review the literature on bony microarchitecture, in vivo bone strain, and finite-element modeling of the facial skeleton of humans and nonhuman primates to address questions regarding the structural and functional existence of facial pillars and buttresses. Available bone material properties data do not support the existence of pillars and buttresses in humans or Sapajus apella. Deformation regimes in the zygomatic complex emphasize bending and shear, therefore conceptualizing the zygomatic complex of humans or nonhuman primates as a pillar obscures its patterns of stress, strain, and deformation. Human fossil relatives and chimpanzees exhibit strain regimes corroborating the existence of a canine-frontal pillar, but the notion of a zygomatic pillar has no support. The emerging consensus on patterns of strain and deformation in finite element models (FEMs) of the human facial skeleton corroborates hypotheses in the clinical literature regarding zygomatic complex function, and provide new insights into patterns of failure of titanium and resorbable plates in experimental studies. It is suggested that the "pillar and buttress" model of human craniofacial skeleton function be replaced with FEMs that more accurately and precisely represent in vivo function, and which can serve as the basis for future research into implants used in restoration of occlusal function and fracture repair. Anat Rec, 299:1753-1778, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Fuerza de la Mordida , Masticación/fisiología , Maxilar/fisiología , Estrés Mecánico , Cigoma/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Análisis de Elementos Finitos , Humanos , Primates , Cráneo/fisiología
13.
Anat Rec (Hoboken) ; 299(12): 1704-1717, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27870347

RESUMEN

The internal and external anatomy of the primate zygoma is central to orofacial function, health, and disease. The importance of variation in its gross morphology across extinct and extant primate forms has been established using finite element analysis, but its internal structure has yet to be explored. In this study, µCT is used to characterize trabecular bone morphometry in two separate regions of the zygoma of humans and Pan. Trabecular anisotropy and orientation are compared with strain orientations observed in trabecular regions of finite element models of four Pan crania. The results of this study show that trabecular bone morphometry, anisotropy, and orientation are highly compatible with strain orientation and magnitude in the finite element models. Trabecular bone in the zygoma is largely orthotropic (with bone orientation differing in three mutually orthogonal directions), with its primary orientation lying in the mediolateral direction. Trabecular bone in the zygomatic region appears to be highly influenced by the local strain environment, and thus may be closely linked to orofacial function. Anat Rec, 299:1704-1717, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Pan paniscus/anatomía & histología , Pan troglodytes/anatomía & histología , Cigoma/anatomía & histología , Animales , Densidad Ósea , Hueso Esponjoso/diagnóstico por imagen , Humanos , Microtomografía por Rayos X , Cigoma/diagnóstico por imagen
14.
PeerJ ; 4: e2242, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547550

RESUMEN

The evolution of the modern human (Homo sapiens) cranium is characterized by a reduction in the size of the feeding system, including reductions in the size of the facial skeleton, postcanine teeth, and the muscles involved in biting and chewing. The conventional view hypothesizes that gracilization of the human feeding system is related to a shift toward eating foods that were less mechanically challenging to consume and/or foods that were processed using tools before being ingested. This hypothesis predicts that human feeding systems should not be well-configured to produce forceful bites and that the cranium should be structurally weak. An alternate hypothesis, based on the observation that humans have mechanically efficient jaw adductors, states that the modern human face is adapted to generate and withstand high biting forces. We used finite element analysis (FEA) to test two opposing mechanical hypotheses: that compared to our closest living relative, chimpanzees (Pan troglodytes), the modern human craniofacial skeleton is (1) less well configured, or (2) better configured to generate and withstand high magnitude bite forces. We considered intraspecific variation in our examination of human feeding biomechanics by examining a sample of geographically diverse crania that differed notably in shape. We found that our biomechanical models of human crania had broadly similar mechanical behavior despite their shape variation and were, on average, less structurally stiff than the crania of chimpanzees during unilateral biting when loaded with physiologically-scaled muscle loads. Our results also show that modern humans are efficient producers of bite force, consistent with previous analyses. However, highly tensile reaction forces were generated at the working (biting) side jaw joint during unilateral molar bites in which the chewing muscles were recruited with bilateral symmetry. In life, such a configuration would have increased the risk of joint dislocation and constrained the maximum recruitment levels of the masticatory muscles on the balancing (non-biting) side of the head. Our results do not necessarily conflict with the hypothesis that anterior tooth (incisors, canines, premolars) biting could have been selectively important in humans, although the reduced size of the premolars in humans has been shown to increase the risk of tooth crown fracture. We interpret our results to suggest that human craniofacial evolution was probably not driven by selection for high magnitude unilateral biting, and that increased masticatory muscle efficiency in humans is likely to be a secondary byproduct of selection for some function unrelated to forceful biting behaviors. These results are consistent with the hypothesis that a shift to softer foods and/or the innovation of pre-oral food processing techniques relaxed selective pressures maintaining craniofacial features that favor forceful biting and chewing behaviors, leading to the characteristically small and gracile faces of modern humans.

15.
Nat Commun ; 7: 10596, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853550

RESUMEN

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Asunto(s)
Fuerza de la Mordida , Simulación por Computador , Dieta , Hominidae , Maxilares/fisiología , Desgaste de los Dientes , Animales , Alimentos , Fósiles , Diente Molar , Pan troglodytes
16.
Anat Rec (Hoboken) ; 298(1): 122-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529239

RESUMEN

In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P(3) and M(2) . Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only on their magnitudes.


Asunto(s)
Análisis de Elementos Finitos , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Femenino , Masculino , Músculos Masticadores/anatomía & histología , Músculos Masticadores/fisiología , Matemática , Modelos Biológicos , Pan troglodytes/clasificación , Análisis de Componente Principal , Especificidad de la Especie
17.
Anat Rec (Hoboken) ; 298(1): 145-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529240

RESUMEN

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.


Asunto(s)
Arco Dental/anatomía & histología , Arco Dental/fisiología , Dieta , Hominidae/anatomía & histología , Hominidae/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Adaptación Fisiológica/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Ingestión de Alimentos/fisiología , Ecología , Análisis de Elementos Finitos , Imagenología Tridimensional , Matemática , Modelos Biológicos
18.
Am J Phys Anthropol ; 153(1): 29-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24318939

RESUMEN

Dental topographic analysis is the quantitative assessment of shape of three-dimensional models of tooth crowns and component features. Molar topographic curvature, relief, and complexity correlate with aspects of feeding behavior in certain living primates, and have been employed to investigate dietary ecology in extant and extinct primate species. This study investigates whether dental topography correlates with diet among a diverse sample of living platyrrhines, and compares platyrrhine topography with that of prosimians. We sampled 111 lower second molars of 11 platyrrhine genera and 121 of 20 prosimian genera. For each tooth we calculated Dirichlet normal energy (DNE), relief index (RFI), and orientation patch count (OPCR), quantifying surface curvature, relief, and complexity respectively. Shearing ratios and quotients were also measured. Statistical analyses partitioned effects of diet and taxon on topography in platyrrhines alone and relative to prosimians. Discriminant function analyses assessed predictive diet models. Results indicate that platyrrhine dental topography correlates to dietary preference, and platyrrhine-only predictive models yield high rates of accuracy. The same is true for prosimians. Topographic variance is broadly similar among platyrrhines and prosimians. One exception is that platyrrhines display higher average relief and lower relief variance, possibly related to lower relative molar size and functional links between relief and tooth longevity distinct from curvature or complexity. Explicitly incorporating phylogenetic distance matrices into statistical analyses of the combined platyrrhine-prosimian sample results in loss of significance of dietary effects for OPCR and SQ, while greatly increasing dietary significance of RFI.


Asunto(s)
Cebidae/anatomía & histología , Diente Molar/anatomía & histología , Strepsirhini/anatomía & histología , Análisis de Varianza , Animales , Antropología Física , Dieta , Ecología , Modelos Estadísticos , Odontometría , Filogenia
19.
Am J Phys Anthropol ; 151(3): 339-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23794330

RESUMEN

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Asunto(s)
Adaptación Biológica , Antropología/métodos , Evolución Biológica , Dieta , Hominidae/anatomía & histología , Animales , Isótopos de Carbono/análisis , Esmalte Dental/anatomía & histología , Ingestión de Alimentos , Análisis de Elementos Finitos , Hominidae/fisiología
20.
Am J Phys Anthropol ; 150(1): 107-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23212472

RESUMEN

Pitheciines (Pithecia, Chiropotes, and Cacajao) are a specialized clade of Neotropical seed predators that exhibit postcanine teeth with low and rounded cusps and highly crenulated occlusal surface enamel. Data on feeding ecology show that Pithecia consumes proportionally more leaves than other pitheciine species, and comparative studies demonstrate its greater molar relief and relative shearing potential. However, data on pitheciine food mechanics show that Pithecia masticates seeds with greater crushing resistance than those preferred by Chiropotes. This variation predicts an opposing morphology characterized by low and more rounded occlusal surfaces in Pithecia. We build on previous research using new methods for molar surface shape quantification by examining pitheciine second molar shearing crest length, occlusal relief, surface complexity, and surface curvature relative to nonseed specializing platyrrhines and within the context of the observed interspecific variation in pitheciine feeding ecology. Consistent with the previous analyses, our findings demonstrate that pitheciine molars exhibit low shearing, relief, and curvature compared with nonseed predators, independent of phylogeny. Pitheciines also exhibit highly "complex" occlusal topography that promotes the efficient breakdown of tough seed tissues. Overall, Pithecia, Chiropotes, and Cacajao share a similar topographic pattern, suggesting adaptation to foods with similar structural and/or mechanical properties. However, Cacajao differs in surface complexity, which reflects some variation in its feeding ecology. Contrary to the predictions, Pithecia and Chiropotes do not differ in any of the topographic variables examined. The range of demands imposed on the postcanine teeth of Pithecia might therefore select for an average topography, one that converges on that of Chiropotes.


Asunto(s)
Herbivoria/fisiología , Diente Molar/anatomía & histología , Diente Molar/fisiología , Pitheciidae/anatomía & histología , Pitheciidae/fisiología , Animales , Antropología Física , Fenómenos Biomecánicos/fisiología , Gráficos por Computador , Dieta , Masticación , Análisis de Componente Principal , Cráneo/anatomía & histología , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...