Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Microbiol ; 121: 104493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637066

RESUMEN

Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.


Asunto(s)
Antiinfecciosos , Secuenciación de Nanoporos , Microbiología de Alimentos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Bacterias/genética , Metagenómica
2.
Front Microbiol ; 14: 1164632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125165

RESUMEN

Introduction: Microbes in the built environment have been implicated as a source of infectious diseases. Bacterial culture is the standard method for assessing the risk of exposure to pathogens in urban environments, but this method only accounts for <1% of the diversity of bacteria. Recently, full-length 16S rRNA gene analysis using nanopore sequencing has been applied for microbial evaluations, resulting in a rise in the development of long-read taxonomic tools for species-level classification. Regarding their comparative performance, there is, however, a lack of information. Methods: Here, we aim to analyze the concordance of the microbial community in the urban environment inferred by multiple taxonomic classifiers, including ARGpore2, Emu, Kraken2/Bracken and NanoCLUST, using our 16S-nanopore dataset generated by MegaBLAST, as well as assess their abilities to identify culturable species based on the conventional culture results. Results: According to our results, NanoCLUST was preferred for 16S microbial profiling because it had a high concordance of dominant species and a similar microbial profile to MegaBLAST, whereas Kraken2/Bracken, which had similar clustering results as NanoCLUST, was also desirable. Second, for culturable species identification, Emu with the highest accuracy (81.2%) and F1 score (29%) for the detection of culturable species was suggested. Discussion: In addition to generating datasets in complex communities for future benchmarking studies, our comprehensive evaluation of the taxonomic classifiers offers recommendations for ongoing microbial community research, particularly for complex communities using nanopore 16S rRNA sequencing.

3.
Emerg Microbes Infect ; 12(1): 2204155, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37070526

RESUMEN

Between January 2015 and October 2022, 38 patients with culture-confirmed melioidosis were identified in the Kowloon West (KW) Region, Hong Kong. Notably, 30 of them were clustered in the Sham Shui Po (SSP) district, which covers an estimated area of 2.5 km2. Between August and October 2022, 18 patients were identified in this district after heavy rainfall and typhoons. The sudden upsurge in cases prompted an environmental investigation, which involved collecting 20 air samples and 72 soil samples from residential areas near the patients. A viable isolate of Burkholderia pseudomallei was obtained from an air sample collected at a building site five days after a typhoon. B. pseudomallei DNA was also detected in 21 soil samples collected from the building site and adjacent gardening areas using full-length 16S rRNA gene sequencing, suggesting that B. psuedomallei is widely distributed in the soil environment surrounding the district. Core genome-multilocus sequence typing showed that the air sample isolate was phylogenetically clustered with the outbreak isolates in KW Region. Multispectral satellite imagery revealed a continuous reduction in vegetation region in SSP district by 162,255 m2 from 2016 to 2022, supporting the hypothesis of inhalation of aerosols from the contaminated soil as the transmission route of melioidosis during extreme weather events. This is because the bacteria in unvegetated soil are more easily spread by winds. In consistent with inhalational melioidosis, 24 (63.2%) patients had pneumonia. Clinicians should be aware of melioidosis during typhoon season and initiate appropriate investigation and treatment for patients with compatible symptoms.


Asunto(s)
Burkholderia pseudomallei , Tormentas Ciclónicas , Melioidosis , Humanos , Melioidosis/diagnóstico , Hong Kong , Estaciones del Año , ARN Ribosómico 16S , Aerosoles y Gotitas Respiratorias , Brotes de Enfermedades , China
4.
Virulence ; 13(1): 1088-1100, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35791449

RESUMEN

Clinical manifestations of tuberculosis range from asymptomatic infection to a life-threatening disease such as tuberculous meningitis (TBM). Recent studies showed that the spectrum of disease severity could be related to genetic diversity among clinical strains of Mycobacterium tuberculosis (Mtb). Certain strains are reported to preferentially invade the central nervous system, thus earning the label "hypervirulent strains".However, specific genetic mutations that accounted for enhanced mycobacterial virulence are still unknown. We previously identified a set of 17 mutations in a hypervirulent Mtb strain that was from TBM patient and exhibited significantly better intracellular survivability. These mutations were also commonly shared by a cluster of globally circulating hyper-virulent strains. Here, we aimed to validate the impact of these hypervirulent-specific mutations on the dysregulation of gene networks associated with virulence in Mtb via multi-omic analysis. We surveyed transcriptomic and proteomic differences between the hyper-virulent and low-virulent strains using RNA-sequencing and label-free quantitative LC-MS/MS approach, respectively. We identified 25 genes consistently differentially expressed between the strains at both transcript and protein level, regardless the strains were growing in a nutrient-rich or a physiologically relevant multi-stress condition (acidic pH, limited nutrients, nitrosative stress, and hypoxia). Based on integrated genomic-transcriptomic and proteomic comparisons, the hypervirulent-specific mutations in FadE5 (g. 295,746 C >T), Rv0178 (p. asp150glu), higB (p. asp30glu), and pip (IS6110-insertion) were linked to deregulated expression of the respective genes and their functionally downstream regulons. The result validated the connections between mutations, gene expression, and mycobacterial pathogenicity, and identified new possible virulence-associated pathways in Mtb.


Asunto(s)
Mycobacterium tuberculosis , Cromatografía Liquida , Humanos , Proteómica , Espectrometría de Masas en Tándem , Virulencia/genética
5.
Antibiotics (Basel) ; 11(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35326832

RESUMEN

The emergence of multidrug-resistant strains and hyper-virulent strains of Mycobacterium tuberculosis are big therapeutic challenges for tuberculosis (TB) control. Repurposing bioactive small-molecule compounds has recently become a new therapeutic approach against TB. This study aimed to identify novel anti-TB agents from a library of small-molecule compounds via a rapid screening system. A total of 320 small-molecule compounds were used to screen for their ability to suppress the expression of a key virulence gene, phop, of the M. tuberculosis complex using luminescence (lux)-based promoter-reporter platforms. The minimum inhibitory and bactericidal concentrations on drug-resistant M. tuberculosis and cytotoxicity to human macrophages were determined. RNA sequencing (RNA-seq) was conducted to determine the drug mechanisms of the selected compounds as novel antibiotics or anti-virulent agents against the M. tuberculosis complex. The results showed that six compounds displayed bactericidal activity against M. bovis BCG, of which Ebselen demonstrated the lowest cytotoxicity to macrophages and was considered as a potential antibiotic for TB. Another ten compounds did not inhibit the in vitro growth of the M. tuberculosis complex and six of them downregulated the expression of phoP/R significantly. Of these, ST-193 and ST-193 (hydrochloride) showed low cytotoxicity and were suggested to be potential anti-virulence agents for M. tuberculosis.

6.
PLoS Genet ; 17(7): e1009369, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237055

RESUMEN

Spermatogonial stem cells (SSC), the foundation of spermatogenesis and male fertility, possess lifelong self-renewal activity. Aging leads to the decline in stem cell function and increased risk of paternal age-related genetic diseases. In the present study, we performed a comparative genomic analysis of mouse SSC-enriched undifferentiated spermatogonia (Oct4-GFP+/KIT-) and differentiating progenitors (Oct4-GFP+/KIT+) isolated from young and aged testes. Our transcriptome data revealed enormous complexity of expressed coding and non-coding RNAs and alternative splicing regulation during SSC differentiation. Further comparison between young and aged undifferentiated spermatogonia suggested these differentiation programs were affected by aging. We identified aberrant expression of genes associated with meiosis and TGF-ß signaling, alteration in alternative splicing regulation and differential expression of specific lncRNAs such as Fendrr. Epigenetic profiling revealed reduced H3K27me3 deposition at numerous pro-differentiation genes during SSC differentiation as well as aberrant H3K27me3 distribution at genes in Wnt and TGF-ß signaling upon aging. Finally, aged undifferentiated spermatogonia exhibited gene body hypomethylation, which is accompanied by an elevated 5hmC level. We believe this in-depth molecular analysis will serve as a reference for future analysis of SSC aging.


Asunto(s)
Células Madre Germinales Adultas/citología , Células Madre Germinales Adultas/fisiología , Envejecimiento/fisiología , Epigenoma , 5-Metilcitosina/metabolismo , Envejecimiento/genética , Empalme Alternativo , Animales , Diferenciación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Lisina/genética , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Largo no Codificante/genética , Testículo/citología
7.
Development ; 146(6)2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30824552

RESUMEN

Neonatal germ cell development provides the foundation of spermatogenesis. However, a systematic understanding of this process is still limited. To resolve cellular and molecular heterogeneity in this process, we profiled single cell transcriptomes of undifferentiated germ cells from neonatal mouse testes and employed unbiased clustering and pseudotime ordering analysis to assign cells to distinct cell states in the developmental continuum. We defined the unique transcriptional programs underlying migratory capacity, resting cellular states and apoptosis regulation in transitional gonocytes. We also identified a subpopulation of primitive spermatogonia marked by CD87 (plasminogen activator, urokinase receptor), which exhibited a higher level of self-renewal gene expression and migration potential. We further revealed a differentiation-primed state within the undifferentiated compartment, in which elevated Oct4 expression correlates with lower expression of self-renewal pathway factors, higher Rarg expression, and enhanced retinoic acid responsiveness. Lastly, a knockdown experiment revealed the role of Oct4 in the regulation of gene expression related to the MAPK pathway and cell adhesion, which may contribute to stem cell differentiation. Our study thus provides novel insights into cellular and molecular regulation during early germ cell development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Análisis de Secuencia de ARN , Espermatogonias/citología , Animales , Animales Recién Nacidos , Apoptosis , Adhesión Celular , Diferenciación Celular , Perfilación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Microscopía Fluorescente , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Receptores de Ácido Retinoico/fisiología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/fisiología , Espermatogénesis/genética , Transcriptoma , Tretinoina/fisiología , Receptor de Ácido Retinoico gamma
8.
Int J Biochem Cell Biol ; 107: 1-5, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30529019

RESUMEN

Single-cell parallel sequencing allows us to explore how genetic and epigenetic variations correlate of gene expression in the same cell. Beads-based approach and non-beads-based approach are the two present methods to separate DNA and RNA from the same cell. However, systematic difference between the two methods are lacking. In our study, we compared the performances of the two methods using transcriptome and methylome profiles generated simultaneously from single mouse oocytes. Our results showed that the beads-based approach could capture maximum quantity of mRNA but loss of DNA was inevitable, while the non-beads-based approach could obtain more DNA due to the undamaged nucleus obtained but at a cost of partial loss of mRNA. As the sequencing coverage of methylome sequencing in a single cell was relatively low, single-cell whole genome bisulfite sequencing (scWGBS) was preferable to generate the methylome map in single-cell parallel sequencing in comparison to single-cell reduced representation bisulfite sequencing (scRRBS). To the best of our knowledge, this is the first study to compare the two methods of single-cell parallel sequencing which offers a basic idea for deciding between the two methods and a direction of single-cell parallel sequencing development.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Oocitos/metabolismo , Análisis de la Célula Individual , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...