Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838684

RESUMEN

Vascular calcification (VC) and osteoporosis are age-related diseases and significant risk factors for the mortality of elderly. VC and osteoporosis may share common risk factors such as renin-angiotensin system (RAS)-related hypertension. In fact, inhibitors of RAS pathway, such as angiotensin type 1 receptor blockers (ARBs), improved both vascular calcification and hip fracture in elderly. However, a sex-dependent discrepancy in the responsiveness to ARB treatment in hip fracture was observed, possibly due to the estrogen deficiency in older women, suggesting that blocking the angiotensin signaling pathway may not be effective to suppress bone resorption, especially if an individual has underlying osteoclast activating conditions such as estrogen deficiency. Therefore, it has its own significance to find alternative modality for inhibiting both vascular calcification and osteoporosis by directly targeting osteoclast activation to circumvent the shortcoming of ARBs in preventing bone resorption in estrogen deficient individuals. In the present study, a natural compound library was screened to find chemical agents that are effective in preventing both calcium deposition in vascular smooth muscle cells (vSMCs) and activation of osteoclast using experimental methods such as Alizarin red staining and Tartrate-resistant acid phosphatase staining. According to our data, citreoviridin (CIT) has both an anti-VC effect and anti-osteoclastic effect in vSMCs and in Raw 264.7 cells, respectively, suggesting its potential as an effective therapeutic agent for both VC and osteoporosis.


Asunto(s)
Aurovertinas , Resorción Ósea , Osteoporosis , Calcificación Vascular , Humanos , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Resorción Ósea/metabolismo , Calcio/metabolismo , Estrógenos/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso , Osteoporosis/metabolismo , Calcificación Vascular/metabolismo , Animales , Ratones , Células RAW 264.7 , Aurovertinas/farmacología
2.
Atherosclerosis ; 346: 53-62, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278873

RESUMEN

BACKGROUND AND AIMS: Arterial calcification (AC), which is an important process in the pathogenesis of atherosclerosis, is accelerated by angiotensin II (Ang II), a critical effector of the renin-angiotensin system (RAS). Receptor for advanced glycation end-product (RAGE) is an important pattern recognition receptor downstream of Ang II. Although recent studies have suggested an association between RAGE-mediated signaling and RAS in AC, the detailed mechanism, particularly in relation to Ang II, remains unclear. METHODS: Therefore, we investigated the role of RAGE-mediated signaling pathways and the therapeutic efficacy of soluble RAGE (sRAGE) in Ang II-induced AC, using both a human aortic smooth muscle cell (HAoSMC) model, and an in vivo apolipoprotein E knockout (ApoE KO) mouse model. RESULTS: According to our data, Ang II significantly increased the calcification of HAoSMCs, and the associated activation of RAGE was mediated by subsequent HMGB1 release through Angiotensin II type 1 receptor activation. Both HMGB1 neutralizing antibody and sRAGE inhibited Ang II-induced calcium deposition. Furthermore, sRAGE attenuated HMGB1 secretion and the activation of RAGE-mediated signaling. The in vivo study indicated that Ang II significantly induced calcium deposition in the aorta, and this was significantly attenuated by sRAGE. CONCLUSIONS: Our findings strongly suggest that blockade of RAGE, using sRAGE, effectively attenuates Ang II-induced arterial calcification.


Asunto(s)
Aterosclerosis , Calcinosis , Proteína HMGB1 , Angiotensina II/farmacología , Animales , Aterosclerosis/metabolismo , Calcio , Proteína HMGB1/metabolismo , Ratones , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo
3.
Molecules ; 25(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198253

RESUMEN

Pathological cardiac hypertrophy is characterized by an abnormal increase in cardiac muscle mass in the left ventricle, resulting in cardiac dysfunction. Although various therapeutic approaches are being continuously developed for heart failure, several studies have suggested natural compounds as novel potential strategies. Considering relevant compounds, we investigated a new role for Pterosin B for which the potential life-affecting biological and therapeutic effects on cardiomyocyte hypertrophy are not fully known. Thus, we investigated whether Pterosin B can regulate cardiomyocyte hypertrophy induced by angiotensin II (Ang II) using H9c2 cells. The antihypertrophic effect of Pterosin B was evaluated, and the results showed that it reduced hypertrophy-related gene expression, cell size, and protein synthesis. In addition, upon Ang II stimulation, Pterosin B attenuated the activation and expression of major receptors, Ang II type 1 receptor and a receptor for advanced glycation end products, by inhibiting the phosphorylation of PKC-ERK-NF-κB pathway signaling molecules. In addition, Pterosin B showed the ability to reduce excessive intracellular reactive oxygen species, critical mediators for cardiac hypertrophy upon Ang II exposure, by regulating the expression levels of NAD(P)H oxidase 2/4. Our results demonstrate the protective role of Pterosin B in cardiomyocyte hypertrophy, suggesting it is a potential therapeutic candidate.


Asunto(s)
Angiotensina II/química , Hipertrofia/tratamiento farmacológico , Indanos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Animales , Línea Celular , Supervivencia Celular , Citosol/metabolismo , Proteína HMGB1/metabolismo , Corazón/efectos de los fármacos , FN-kappa B/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal
4.
Mol Cells ; 34(1): 53-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22699756

RESUMEN

Constitutive overexpression of transgenes occasionally interferes with normal growth and developmental processes in plants. Thus, the development of tissue-specific promoters that drive transgene expression has become agriculturally important. To identify tomato tissue-specific promoters, tissue-specific genes were screened using a series of in silico-based and experimental procedures, including genome-wide orthologue searches of tomato and Arabidopsis databases, isolation of tissue-specific candidates using an Arabidopsis microarray database, and validation of tissue specificity by reverse transcription-polymerase chain reaction (RT-PCR) analysis and promoter assay. Using these procedures, we found 311 tissue-specific candidate genes and validated 10 tissue-specific genes by RT-PCR. Among these identified genes, histochemical analysis of five isolated promoter::GUS transgenic tomato and Arabidopsis plants revealed that their promoters have different but distinct tissue-specific activities in anther, fruit, and root, respectively. Therefore, it appears these in silico-based screening approaches in addition to the identification of new tissue-specific genes and promoters will be helpful for the further development of tailored crop development.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Regiones Promotoras Genéticas , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Etiquetas de Secuencia Expresada , Flores/genética , Flores/metabolismo , Expresión Génica , Genoma de Planta , Solanum lycopersicum/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo , Transcriptoma
5.
Biochem Biophys Res Commun ; 399(4): 750-4, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20705057

RESUMEN

As a heterodimeric protein, ferredoxin:thioredoxin reductase (FTR) catalyses the light-dependant activation of several photosynthetic enzymes. The active site of the catalytic subunit of FTR contains a redox-active disulfide and a [4Fe-4S] center. We isolated the catalytic subunit gene of FTR, designated SlFTR-c, from tomato (Solanum lycopersicum L.). SlFTR-c transcripts were detected in all tissues examined, including roots, leaves, flowers, fruits, and seeds. Interestingly, virus-induced gene silencing (VIGS) of SlFTR-c resulted in necrotic lesions with typical cell death symptoms and reactive oxygen species (ROS) production in tomato leaves. Moreover, these SlFTR-c-silenced plants displayed enhanced disease resistance against bacterial pathogens, specifically Pseudomonas syringae pv. tomato DC3000, by the induction of defense-related genes (SlPR-1, SlPR-2, SlPR-5, SlGlucA, SlChi3, and SlChi9). Taken together, it seems that SlFTR-c works as a regulator of programmed cell death (PCD) and pathogen resistance in tomato plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas Hierro-Azufre/genética , Oxidorreductasas/genética , Enfermedades de las Plantas/genética , Pseudomonas syringae , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Secuencia de Aminoácidos , Apoptosis/genética , Dominio Catalítico/genética , Silenciador del Gen , Solanum lycopersicum/citología , Datos de Secuencia Molecular , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...