Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nature ; 619(7971): 724-732, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438522

RESUMEN

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

2.
Science ; 378(6624): 1105-1110, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36417498

RESUMEN

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.

3.
Geobiology ; 19(2): 147-161, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33331051

RESUMEN

It is established that green algae and land plants progressively colonized freshwater and terrestrial habitats throughout the Paleozoic Era, but little is known about the ecology of Paleozoic saline lakes. Here, we report lipid biomarker and petrographic evidence for the occurrence of a green alga as a major primary producer in a late Paleozoic alkaline lake (Fengcheng Formation; 309-292 Ma). A persistently saline and alkaline lacustrine setting is supported by mineralogical and lipid biomarker evidence alongside extremely enriched δ15 Nbulk values (+16 to +24‰) for the lake depocenter. The prominence of C28 and C29 steroids, co-occurring with abundant carotene-derived accessory pigment markers in these ancient rocks, is suggestive of prolific primary production and elevated source inputs from haloalkaliphilic green algae. The high C28 /C29 -sterane ratios (0.78-1.29) are significantly higher than the typical marine value reported for late Paleozoic rocks (<0.5) and thus are associated with certain groups of chlorophytes. Adaptation to such extreme lacustrine environments, aided by enhanced biosynthesis of certain cell membrane lipids, likely played an important role in the evolution and physiological development of ancient green algae.


Asunto(s)
Chlorophyta , Lagos , Ecosistema
4.
Biomed Microdevices ; 21(1): 7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30607550

RESUMEN

In this paper, we report on using mass transport to control nutrition supply of colorectal cancer cells for developing a microtumor in a confined microchamber. To mimic the spatial heterogeneity of a tumor, two microfluidic configurations based on resistive circuits are designed. One has a convection-dominated microchamber to simulate the tumor region proximal to leaky blood vessels. The other has a diffusion-dominated microchamber to mimic the tumor core that lacks blood vessels and nutrient supply. Thus, the time for nutrition to fill the microchamber can vary from tens of minutes to several hours. Results show that cells cultured under a diffusive supply of nutrition have a high glycolytic rate and a nearly constant oxygen consumption rate. In contrast, cells cultured under convective supply of nutrition have a gradual increase of oxygen consumption rate with a low glycolytic rate. This suggests that cancer cells have distinct reactions under different mass transport and nutrition supply. Using these two microfluidic platforms to create different rate of nutrition supply, it is found that a continuous microtumor that almost fills the mm-size microchamber can be developed under a low-nutrient supply environment, but not for the convective condition. It also is demonstrated that microchannels can simulate the delivery of anti-cancer drugs to the microtumor under controlled mass-transport. This method provides a means to develop a larger scale microtumor in a lab-on-a-Chip system for post development and stimulations, and microchannels can be applied to control the physical and chemical environment for anti-cancer drug screening.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias Colorrectales/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Transporte Biológico Activo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...