Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1352, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228672

RESUMEN

Validating the direct photocatalytic activity of colloidal plasmonic nanoparticles is challenging due to their limited stability and needed support materials that can often contribute to the chemical reactions. Stable gold nanoparticles (AuNPs) with tunable sizes are prepared across porous polymer particles without any chemical bonds where the resulting composite particles exhibit intense surface plasmon resonances (SPRs) in the visible region. These composite particles are then tested as photocatalysts under a broadband solar-simulated light source to examine the contribution degree of photothermal heating and SPR coming from the incorporated AuNPs in the C-C bond forming homocoupling reaction. Generally, the thermal and photothermal heating are the main driving force to increase the reactivity of relatively smaller AuNPs (~ 44 nm in diameter) with a narrower SPR band. However, the SPR-induced catalytic activity is much greater for the composite particles containing larger AuNPs (~ 87 nm in diameter) with a broader SPR. As the polymer particle matrix does not influence the catalytic activity (e.g., inducing charge delocalization and/or separation), the unique SPR role of the colloidal AuNPs in the catalytic reaction is assessable under light irradiation. This study experimentally demonstrates the possibility of evaluating the direct contribution of SPRs to photocatalytic chemical reactions.

2.
Dalton Trans ; 53(11): 5001-5009, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059528

RESUMEN

Oxygen evolution reaction (OER) electrocatalysts are frequently made from noble metal-based oxides like ruthenium/iridium oxides. However, because of their scarcity and high price, researchers are now focusing on creating innovative OER catalysts based on affordable transition metals that have improved electrical conductivity and accessibility to active sites. Metal-organic frameworks (MOFs), a unique class of inorganic materials with excellent physical and chemical properties, have witnessed significant progress in promising green energy systems. In this work, a novel mixed-ligand metal-organic framework [Co(µ-1κN,2κN'-BDP)(µ3-1κoo',2κo''2κo'''-BTC)]n·nH2O (BDP = boron-dipyrromethene or BODIPY; BTC = benzene tricarboxylate) denoted as CoBDPMOF has been synthesized, and its composites with different carbon materials have been designed. Compared to the pristine MOF, the composites showed enhanced electrocatalytic activity toward the oxygen evolution reaction (OER) in alkaline media. In addition, the CoBDPMOF with activated carbon showed the highest OER performance with a low Tafel slope (82 mV dec-1) and the highest j600 (59.8 mA cm-2), outperforming noble metal IrO2, the OER benchmark electrocatalyst. This study presents new insights into the design and application of CoBDPMOF-based materials for energy conversion and suggests promising avenues for further research and development in electrocatalysis.

3.
RSC Adv ; 12(23): 14570-14577, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35702224

RESUMEN

In this study, we demonstrate an integrated synthesis strategy, which is conducted by the thermochemical process, consisting of pre- and post-activation by thermal treatment and KOH activation for the reduction of graphite oxide. A large number of interconnected pore networks with a micro/mesoporous range were constructed on a framework of graphene layers with a specific surface area of up to 1261 m2 g-1. This suggests a synergistic effect of thermally exfoliated graphene oxide (TEGO) on the removal efficiency of volatile organic compounds by generating pore texture with aromatic adsorbates such as benzene, toluene, and o-xylene (denoted as BTX) from an inert gaseous stream concentration of 100 ppm. As a proof of concept, TEGO, as well as pre- and post-activated TEGO, were used as adsorbents in a self-designed BTX gas adsorption apparatus, which exhibited a high removal efficiency of up to 98 ± 2%. The distinctive structure of TEGO has a significant effect on removal performance, which will greatly facilitate the strategy of efficient VOC removal configurations.

4.
Dalton Trans ; 51(11): 4257-4261, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35234791

RESUMEN

A zinc-based pyrene-porphyrin hybrid linear 1-D coordination polymer ZnPyrPorp with general formula [Zn(Pyr)(Porp)]n (Pyr = pyrene, Porp = tetraphenylporphyrin) was synthesized using a facile one-pot solvothermal method and fully characterized using different analytical techniques. The single-crystal X-ray diffraction (SCXRD) structure exhibited an interesting morphology with zinc metal coordinated to the porphyrin center, which was further bonded to the pyridine groups of the pyrene ligand, resulting in a linear 1-D-type polymer, with repeated Pyr-ZnTPP-Pyr units. The light-harvesting properties of the ZnPyrPorp polymer were investigated. Additionally, ZnPyrPorp showed excellent catalytic activity toward the photooxidation of 1,5-dihydroxynaphthalene.

5.
ACS Appl Mater Interfaces ; 14(8): 10637-10647, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175723

RESUMEN

Because of their high porosity, metal-organic framework (MOF) materials have attracted much attention for use in gas-sensing applications. However, problems with the processability of MOFs for use in reliable gas-sensing electronics remain unsolved. Herein, combination of the strong gas-adsorbing properties of MOF nanomaterials and organic thin-film transistor-type chemical sensors is proposed and experimentally demonstrated. The hybrid blend system with inorganic MOF nanomaterials and organic semiconductors likely exhibits thermodynamic instability because of each phase's self-aggregation, which is difficult to settle without surface functionalization. We propose a novel method to produce an inorganic-organic hybrid sensor by introducing carbon nanofibers as a scaffold. We demonstrate that the carbon nanofibers perform dual functions: enabling the attachment of MOF nanoparticles at the fiber surface, which stabilizes the nanoparticle-embedded polymer layer, and maintaining reliable conductivity for improved gas-sensing performance. On the basis of our characterization of their nanomorphology and nanocrystal structure, the MOF nanoparticles and carbon nanofibers are shown to render a hybrid core-shell structure in the conjugated polymer matrix. This organic-inorganic hybrid system was incorporated into a field-effect transistor device to detect hazardous NO2 gas analytes, operating in real-time with high responsivity. The prototype chemical sensor holds enormous promise for other chemical sensors.

6.
Coord Chem Rev ; 4522022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001940

RESUMEN

Boron dipyrromethene, commonly known as BODIPY, based metal-organic macrocycles (MOCs) and metal-organic frameworks (MOFs) represent an interesting part of materials due to their versatile tunability of structure and functionality as well as significant physicochemical properties, thus broadening their applications in various scientific domains, especially in biomedical sciences. With increasing concern over the efficacy of cancer drugs versus quality of patient's life dilemma, scientists have been trying to fabricate novel comprehensive therapeutic strategies along with the discovery of novel safer drugs where research with BODIPY metal complexes has shown vital advancements. In this review, we have exclusively examined the articles involving studies related to light harvesting and photophysical properties of BODIPY based MOCs and MOFs, synthesized through self-assembly process, with a special focus on biomolecular interaction and its importance in anti-cancer drug research. In the end, we also emphasized the possible practical challenges involved during the synthetic process, based on our experience on dealing with BODIPY molecules and steps to overcome them along with their future potentials. This review will significantly help our fellow research groups, especially the budding researchers, to quickly and comprehensively get the near to wholesome picture of BODIPY based MOCs and MOFs and their present status in anti-cancer drug discovery.

7.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112189, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34752984

RESUMEN

Sonodynamic therapy, which utilizes ultrasound (US) to produce cytotoxic reactive oxygen species (ROS), can overcome the critical drawbacks of photodynamic therapy, such as limited tissue penetration depth. However, the development of sonosensitizers having superior sonodynamic effects and desirable biocompatibility remains a major challenge. In this study, nanoscale zirconium-based porphyrinic metal organic frameworks (MOFs) (PCN-222) were developed as safe and effective nanosonosensitizers. Polyethylene glycol (PEG)-coated PCN-222 (PEG-PCN) was loaded with a pro-oxidant drug, piperlongumine (PL), to enable tumor-specific chemo-photodynamic combination therapy. Both PEG-PCN and PL-incorporated PEG-PCN (PL-PEG-PCN) showed high colloidal stability in biological media. In addition, nanoscale PL-PEG-PCN was efficiently internalized by breast cancer cells, leading to substantially increased ROS generation under US exposure. The effective intracellular delivery of PL by PEG-PCN further elevated the level of intracellular ROS in breast cancer cells owing to the pro-oxidative activity of PL. Therefore, PL-PEG-PCN revealed significantly higher sonotoxicity than free PL and PEG-PCN. Owing to the cancer-specific apoptosis triggered by PL, PL-PEG-PCN showed cancer-selective cell death in breast cancer cells compared with normal fibroblast cells. This study demonstrates that pro-oxidant drug-loaded porphyrinic MOFs are biocompatible and effective sonosensitizers for cancer-targeted chemo-sonodynamic combination therapy.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Profármacos , Oxidantes , Especies Reactivas de Oxígeno , Circonio
8.
Inorg Chem ; 60(14): 10249-10256, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34037384

RESUMEN

Pesticides are chemicals widely used for agricultural industry, despite their negative impact on health and environment. Although various methods have been developed for pesticide degradation to remedy such adverse effects, conventional materials often take hours to days for complete decomposition and are difficult to recycle. Here, we demonstrate the rapid degradation of organophosphate pesticides with a Zr-based metal-organic framework (MOF), showing complete degradation within 15 min. MOFs with different active site structures (Zr node connectivity and geometry) were compared, and a porphyrin-based MOF with six-connected Zr nodes showed remarkable degradation efficiency with half-lives of a few minutes. Such a high efficiency was further confirmed in a simple flow system for several cycles. This study reveals that MOFs can be highly potent heterogeneous catalysts for organophosphate pesticide degradation, suggesting that coordination geometry of the Zr node significantly influences the catalytic activity.


Asunto(s)
Estructuras Metalorgánicas/química , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad , Plaguicidas/química , Plaguicidas/toxicidad , Circonio/química , Catálisis , Cinética
9.
ACS Appl Mater Interfaces ; 13(20): 24005-24012, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33999613

RESUMEN

Air pollution sensors based on organic transistors have attracted much interest recently; however, the devices suffer from low responsivity and slow response and recovery rates for gas analytes. These shortcomings are attributed to the low charge-carrier mobility of organic semiconductors and to a structural limitation resulting from the use of a thick and continuous active layer. In the present work, we investigated the material properties of a multiscale porous zeolitic imidazolate framework, [Zn(2-methylimidazole)2]n (ZIF-8), and examined its potential as an analyte channel material inserted at an organic-transistor active layer. A series of carbonized zeolitic imidazolate frameworks (ZIFs) were prepared by thermal conversion of ZIF-8 and also studied for comparison. The microstructures, morphologies, and optical/electrical characteristics of polythiophene/ZIF-8 hybrid films were systematically investigated. Organic-transistor-type nitrogen dioxide sensors based on the polythiophene/ZIF-8 hybrid films showed substantially improved sensing properties, including responsivity, response rate, and recovery rate. The electrical conductivity of the carbonized ZIF-8s enhanced the field-effect mobility of the organic transistors; however, the sensing performance was not improved, because of the closed pore structures resulting from the carbonization. These results provide invaluable information and useful insights into the design of transistor-type gas sensors based on organic semiconductor/metal-organic framework hybrid films.

10.
Nanomaterials (Basel) ; 10(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993164

RESUMEN

Metal-organic frameworks (MOFs) represent a class of solid-state hybrid compounds consisting of multitopic organic struts and metal-based nodes that are interconnected by coordination bonds, and they are ideal for light harvesting due to their highly ordered structure. These structures can be constructed with chromophore organic ligands structures for the purpose of efficient light harvesting. Here, we prepared porphyrin-based nano-scaled MOFs (nPCN-222) with BODIPY and I2BODIPY photosensitizers by incorporating BODIPY/I2BODIPY into nPCN-222 (nPCN-BDP/nPCN-I2BDP) and demonstrated resonance energy transfer from the donor (BODIPY/I2BODIPY) to the acceptor (nPCN-222) resulting in greatly enhanced fluorescence of nPCN-222, as visually manifested by time-resolved and space-resolved fluorescence imaging of the nano-scaled MOFs.

11.
Inorg Chem ; 59(17): 12947-12953, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32806889

RESUMEN

Effective sequestration of harmful organic pollutants from wastewater has been a persistent concern in the interest of environmental and ecological protection from pollution and hazards. Currently, common water treatment technologies such as adsorption, coagulation, and membranes are expensive and not greatly effective. A new class of organic and inorganic composite metal-organic frameworks (MOFs) has emerged as an essential class of materials for numerous applications, including photocatalytic degradation of organic pollutants. Herein, we present a nanosize mixed-ligand MOF (nMLM) which was successfully synthesized by reacting a Zr metal source with a mixture of pyrene and porphyrin building units and further utilized as photocatalyst in the photodegradation of rhodamine B (RhB). The nMLM MOF showed excellent photocatalytic efficiency, which was due to the complementary absorption and sequential energy and electron transfer properties of its building blocks, pyrene and porphyrin. We also propose herein a possible mechanism of the photocatalytic function of the material.

12.
J Adv Res ; 24: 205-209, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32373354

RESUMEN

In the oxidative dehydrogenation (ODH) process that converts ethylbenzene to styrene, vanadium-based catalysts, especially V2O5, are used in a CO2 atmosphere to enhance process efficiency. Here we demonstrate that the activation energy of V2O5 can be manipulated by exposure to high pressure CO2, using V2O5 nanowires (VON). The oxidation of V4+ to V5+ was observed by X-ray photoelectron spectroscopy. The ratio of V4+/V5+ which the typical comparable feature decreased 73.42%. We also found an increase in the interlayer distance in VON from 9.95 Å to 10.10 Å using X-ray diffraction patterns. We observed changes in the peaks of the stretching mode of bridging triply coordinated oxygen (V3-O), and the bending vibration of the bridging V-O-V, using Raman spectroscopy. We confirmed this propensity by measuring the CO2 pressure-dependent conductance of VON, up to 45 bar. 92.52% of decrease in the maximum conductance compared with that of the pristine VON was observed. The results of this study suggest that ODH process performance can be improved using the VON catalyst in a high pressure CO2 atmosphere.

13.
ACS Omega ; 4(8): 13200-13208, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31460447

RESUMEN

Metal-based multinuclear supramolecules with different functionalities designed by self-assembly represent a growing area of research due to their versatile applications, particularly as anticancer agents. Four novel boron dipyrromethene (BODIPY)-based octacationic heterometallic molecular squares, 3-6 were synthesized by self-assembly via reaction of dipyridyl BODIPY ligands with suitable 90° palladium and platinum acceptors. The formation of the as-synthesized molecular squares was confirmed by multinuclear NMR spectroscopy, elemental analysis, high resolution electrospray mass spectrometry, UV-vis spectroscopy, and fluorescence spectroscopy. The square molecular structures of 4 and 6 were further rationalized theoretically using the PM7 semi-empirical method. The activities of the supramolecules against cancer cells were tested using cell lines of various malignant and nonmalignant origins. Complexes 3-6 showed high cytotoxicity toward cancer cells but 7.0 to 15.2 times lower cytotoxic effects were observed against nonmalignant human kidney epithelial cells (HEK-293). Particularly, complexes 3-6 provided 2.1-6.0 times lower IC50 values as compared to cisplatin in HCT116 cells. Interestingly, BDP ligand-containing complexes (3 and 4) induced cytotoxicity through apoptosis, whereas BDPCC-based complexes (5 and 6) induced cell death by necrosis. This study presents a novel series of iron-based heteroatomic palladium and platinum complexes that exhibit substantial potential as drug candidates for anticancer therapy.

14.
Sci Rep ; 9(1): 10922, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358796

RESUMEN

As novel technologies have been developed, emissions of gases of volatile organic compounds (VOCs) have increased. These affect human health and are destructive to the environment, contributing to global warming. Hence, regulations on the use of volatile organic compounds have been strengthened. Therefore, powerful adsorbents are required for volatile organic compounds gases. In this study, we used graphene powder with a mesoporous structure to adsorb aromatic compounds such as toluene and xylene at various concentrations (30, 50, 100 ppm). The configuration and chemical composition of the adsorbents were characterized using scanning electron microscopy (SEM), N2 adsorption-desorption isotherm measurements, and X-ray photoelectron spectroscopy (XPS). The adsorption test was carried out using a polypropylene filter, which contained the adsorbents (0.25 g), with analysis performed using a gas detector. Compared to graphite oxide (GO) powder, the specific surface area of thermally expanded graphene powder (TEGP800) increased significantly, to 542 m2 g-1, and its chemical properties transformed from polar to non-polar. Thermally expanded graphene powder exhibits high adsorption efficiency for toluene (92.7-98.3%) and xylene (96.7-98%) and its reusability is remarkable, being at least 91%.

15.
Inorg Chem ; 58(13): 8587-8595, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31117633

RESUMEN

A new N,O-based BODIPY ligand was synthesized and further utilized to develop highly fluorescent and photostable Ru(II), Rh(III), and Ir(III) metal complexes. The complexes were fully characterized by different analytical techniques including single-crystal XRD studies. The photostabilities and live cell imaging capabilities of the complexes were investigated via confocal microscopy. The complexes localized specifically in the mitochondria of live cells and showed negligible cytotoxicities at a concentration used for imaging purposes. They also exhibited high photostabilities, with fluorescence intensities remaining above 50% after 1800 scans.


Asunto(s)
Compuestos de Boro/metabolismo , Complejos de Coordinación/metabolismo , Colorantes Fluorescentes/metabolismo , Mitocondrias/metabolismo , Transporte Biológico , Compuestos de Boro/síntesis química , Compuestos de Boro/efectos de la radiación , Compuestos de Boro/toxicidad , Complejos de Coordinación/síntesis química , Complejos de Coordinación/efectos de la radiación , Complejos de Coordinación/toxicidad , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Iridio/química , Ligandos , Microscopía Confocal , Fotoblanqueo , Rodio/química , Rutenio/química
16.
J Nat Prod ; 81(9): 1956-1961, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30215255

RESUMEN

The search for new plant-based anti-inflammatory drugs continues in order to overcome the detrimental side effects of conventional anti-inflammatory agents, both steroidal and nonsteroidal. This study involves the quinoline SPE2, 7-hydroxy-6-methoxyquinolin-2(1 H)-one, isolated from the EtOAc fraction of Spondias pinnata bark. Structure elucidation was done using analytical spectroscopic methods including Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and single-crystal X-ray crystallography. The anti-inflammatory activity of SPE2 was evaluated in a lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 model. SPE2 effectively suppressed LPS-induced overproduction of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß, and reactive oxygen species. Expression levels of NO synthesizing enzyme, cyclooxygenase-2, TNF-α, IL-6 and IL-1ß were also determined to return to normal after SPE2 treatment. Localization of NF-κB was evaluated by confocal microscopy and Western blotting, which showed a dose-dependent reduction of NF-κB inside the nucleus and an increase in cytoplasmic NF-κB with SPE2 treatment. Collectively, the results suggest that SPE2 has anti-inflammatory activity via inhibition of NF-κB activation.


Asunto(s)
Anacardiaceae/química , Antiinflamatorios/farmacología , Quinolinas/farmacología , Animales , Espectroscopía de Resonancia Magnética , Ratones , FN-kappa B/antagonistas & inhibidores , Corteza de la Planta/química , Quinolinas/química , Quinolinas/aislamiento & purificación , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
17.
J Inorg Biochem ; 189: 17-29, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30153544

RESUMEN

The use of organic compounds with known medicinal properties in the synthesis of metal-based complexes is an important alternative to improve the biological activity of metal-based drugs. The reaction of [M(arene)Cl2]2 (M = Ru, arene = p-cymene and M = Ir, arene = pentamethylcyclopentadienyl, cp*) with avobenzone (1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione, AVBH) and KOH in methanol leads to the formation of the neutral complexes [Ru(p-cymene)(AVB)Cl] 1 and [Ir(cp*)(AVB)Cl] 2 (cp* = pentamethylcyclopentadienyl). Subsequent reaction of 1 and 2 with pyridyl derivative-BODIPY ligands, BDP and BDPCC (BODIPY = boron dipyrromethene, BDP = 4-dipyridine boron dipyrromethene, BDPCC = 4-ethynylpyridine boron dipyrromethene) in methanol gives a series of four new dicationic supramolecules: [Ru2(p-cymene)2(AVB)2BDP][2CF3SO3] 3, [Ir2(cp*)2(AVB)2BDP][2CF3SO3] 4, [Ru2(p-cymene)2(AVB)2BDPCC][2CF3SO3] 5 and [Ir2(cp*)2(AVB)2BDPCC][2CF3SO3] 6. The synthesized complexes are fully characterized using multiple analytical techniques, including elemental analysis, 1H NMR, 13C NMR, 19F NMR (NMR = Nuclear Magnetic Resonance), Infrared Radiation (IR), Electrospray Ionization-Mass Spectrometry (ESI-MS), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. The structures of these complexes are further rationalized using density functional theory (DFT) calculations. The antiproliferative activity of the neutral and dinuclear cationic complexes is evaluated in vitro in different human cancer cell lines. These complexes are found to be active against different cancer cell lines with half maximal inhibitory concentration (IC50) values between 1 and 5 µM. Complexes 5 and 6 displayed the lowest IC50 values in all the cell lines studied. The activity of 5 and 6 is comparable to that of the well-known chemotherapy drug doxorubicin. Detailed biophysical studies indicate that complexes 5 and 6 exhibit very good Deoxyribonucleic acid (DNA) binding properties, causing the unwinding of the double helix, which is a probable reason for their high cytotoxicity.


Asunto(s)
Antineoplásicos/química , Compuestos de Boro/química , Iridio/química , Propiofenonas/química , Rutenio/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Relación Estructura-Actividad
18.
Chempluschem ; 83(5): 339-347, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-31957364

RESUMEN

A new 4-ethynylpyridine 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based ligand L, which was synthesized by means of the Sonogashira coupling method, was used to obtain two new [2+2] iridium-based metallarectangles, 3 and 4. Ligand L and metallarectangles 3 and 4 were fully characterized through various analytical techniques. The structure of rectangle 4 was further confirmed by single-crystal X-ray diffraction analysis, which showed the formation of an expected [2+2] supramolecule, in which the iridium metal centers were bridged with ligand L to form the desired metallarectangle 4. In the context of the growing biological interest in metallarectangles, rectangle 4 was found to be highly active against two types of cancer cells, with IC50 values almost threefold superior to those of cisplatin. Both 3 and 4 showed dose-dependent abilities to bind bovine serum albumin and salmon sperm DNA; this indicated their tendency to interact with such biomolecules as a potential mode of action.

19.
RSC Adv ; 9(1): 529-535, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-35521569

RESUMEN

A facile, reliable, fast-response poly(3-hexylthiophene-2,5-diyl) (P3HT)-based humidity sensor was developed by introducing metal-organic frameworks (MOFs), HKUST-1, into the semiconducting layer. HKUST-1 displayed an excellent ability to capture water molecules, thereby generating and attracting charge carriers derived from the water molecules present in the active layer. The HKUST-1/P3HT hybrid film showed excellent device sensitivity with an enhanced electrical current and a threshold voltage shift as a function of the relative humidity due to the superior gas capture properties and the porosity of HKUST-1. The surface energy of the substrate altered the distribution and location of HKUST-1 in the active layer, which improved the sensitivity of the hydrophilic surface. A dynamic gas sensing test revealed that the hybrid film displayed a reliable and stable performance with fast response and recovery times. The introduction of MOFs into a conjugated polymer stabilized and sensitized the devices, providing a facile method of improving gas sensor technologies based on organic semiconductors.

20.
J Hazard Mater ; 344: 458-465, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29128825

RESUMEN

Volatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.1-0.5g on a 50×50mm2 area, to evaluate their adsorption features with low gas concentrations. The morphology and chemical composition of the adsorbents were characterized using scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. Microwave irradiation and heat treatment near 800°C under KOH activation resulted in enlargement of the pristine graphene surface and its specific surface area; maximum volume capacities of 3510m3/g and 630m3/g were observed for toluene and acetaldehyde gas. The high removal efficiency for toluene (98%) versus acetaldehyde (30%) gas was attributed to π-π interactions between the pristine graphene surface and toluene molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...