Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res Treat ; 55(2): 429-441, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36470260

RESUMEN

PURPOSE: Targeted next-generation sequencing (NGS) is widely used for simultaneously detecting clinically informative genetic alterations in a single assay. Its application in clinical settings requires the validation of NGS gene panels. In this study, we aimed to validate a targeted hybridization capture-based DNA panel (ONCOaccuPanel) using the Illumina MiSeq sequencing platform. The panel allows the simultaneous detection of single-nucleotide variants (SNVs), insertions, deletions, and copy number changes of 323 genes and fusions of 17 genes in solid tumors. Materials and Methods: We used 16 formalin-fixed paraffin-embedded (FFPE) tumor samples with previously known genetic mutations and one reference material (HD827) for validation. Moreover, we sequenced an additional 117 FFPE tumor samples to demonstrate the clinical utility of this panel. RESULTS: Validation revealed a 100% positive percentage agreement and positive predictive value for the detection of SNVs, insertions, deletions, copy number changes, fusion genes, and microsatellite instability-high types. We observed high levels of reproducibility and repeatability (R2 correlation coefficients=0.96-0.98). In the limit of detection assessment, we identified all clinically relevant genes with allele frequencies > 3%. Furthermore, the clinical application of ONCOaccuPanel using 117 FFPE samples demonstrated robust detection of oncogenic alterations. Oncogenic alterations and targetable genetic alterations were detected in 98.2% and 27.4% cases, respectively. CONCLUSION: ONCOaccuPanel demonstrated high analytical sensitivity, reproducibility, and repeatability and is feasible for the detection of clinically relevant mutations in clinical settings.


Asunto(s)
Neoplasias , Humanos , Reproducibilidad de los Resultados , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Mutación , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234911

RESUMEN

The objective of the present study is to enhance the resistant starch (RS) content of high amylose rice starch with heat-moisture treatment (HMT) for industrial application. The optimized HMT condition for achieving the highest RS content established using response surface methodology (RSM) was a temperature of 100 °C, moisture content of 24.2%, and a time of 11.5 h. Upon HMT, the RS content increased from 32.1% for native starch to 46.4% in HMT starch with optimized condition. HMT of the starches reduced the solubility and swelling power. The surface of HMT starch granules was more irregular than native starch. The X-ray diffraction (XRD) peak intensity at 2θ = 5° was greatly reduced by HMT, and the peaks at 22.7° and 24.2° were merged. HMT increased the gelatinization temperature and reduced the gelatinization enthalpy. HMT provides a method for the production of high-yield RS2 with high amylose rice starch in industrial application.


Asunto(s)
Amilosa , Oryza , Calor , Almidón Resistente , Almidón , Agua , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA