Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 146: 451-462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320915

RESUMEN

Remaining useful life (RUL) prediction and degradation assessment are pivotal components of prognostic and health management (PHM) and represent vital tasks in the implementation of predictive maintenance for bearings. In recent years, data-driven PHM techniques for bearings have made substantial progress through the integration of deep learning methods. However, modeling the temporal dependencies inherent in raw vibration signals for both degradation assessment and RUL prediction remains a significant challenge. Hence, we propose a joint optimization architecture that uses a temporal convolutional auto-encoder (TCAE) for the degradation assessment and RUL prediction of bearings. Specifically, the architecture includes a sequence-to-sequence model to extract degradation-sensitive features from the raw signal and utilizes temporal distribution characterization (TDC) and a nonlinear regressor to determine the degradation stages and predict RUL, respectively. Our framework integrates the tasks of degradation assessment and RUL prediction in a unified, end-to-end manner, using raw signals as input, resulting in high RUL prediction accuracy (RMSE = 0.0832) on publicly available and self-built datasets. Our approach outperforms state-of-the-art methods, indicating its potential to significantly advance the field of PHM for bearings.

2.
Sci Rep ; 13(1): 3990, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894579

RESUMEN

In highly connected financial networks, the failure of a single institution can cascade into additional bank failures. This systemic risk can be mitigated by adjusting the loans, holding shares, and other liabilities connecting institutions in a way that prevents cascading of failures. We are approaching the systemic risk problem by attempting to optimize the connections between the institutions. In order to provide a more realistic simulation environment, we have incorporated nonlinear/discontinuous losses in the value of the banks. To address scalability challenges, we have developed a two-stage algorithm where the networks are partitioned into modules of highly interconnected banks and then the modules are individually optimized. We developed a new algorithms for classical and quantum partitioning for directed and weighed graphs (first stage) and a new methodology for solving Mixed Integer Linear Programming problems with constraints for the systemic risk context (second stage). We compare classical and quantum algorithms for the partitioning problem. Experimental results demonstrate that our two-stage optimization with quantum partitioning is more resilient to financial shocks, delays the cascade failure phase transition, and reduces the total number of failures at convergence under systemic risks with reduced time complexity.

3.
Med Phys ; 41(2): 021705, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24506596

RESUMEN

PURPOSE: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. METHODS: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxels on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. RESULTS: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. CONCLUSIONS: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.


Asunto(s)
Modelos Biológicos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/radioterapia , Femenino , Humanos , Imagen por Resonancia Magnética , Cadenas de Markov , Órganos en Riesgo/efectos de la radiación , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...