Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(33): e2400780, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38554020

RESUMEN

Developing efficient homojunctions on g-C3N4 promises metal-free photocatalysis to realize truly sustainable artificial photosynthesis. However, current designs are limited by hindered charge separation due to inevitable grain boundaries and random formation of ineffective homojunctions embedded within the photocatalyst. Here, efficient photocatalysis is driven by introducing effective surface homojunctions on chemically and structurally identical g-C3N4 through leveraging its size-dependent electronic properties. Using a top-down approach, the surface layer of bulk g-C3N4 is partially exfoliated to create sheet-like g-C3N4 nanostructures on the bulk material. This hierarchical design establishes a subtle band energy offset between the macroscopic and nanoscopic g-C3N4, generating homojunctions while maintaining the chemical and structural integrities of the original g-C3N4. The optimized g-C3N4 homojunction demonstrates superior photocatalytic degradation of antibiotic pollutants at >96% efficiency in 2 h, even in different real water samples. It achieves reaction kinetics (≈0.041 min-1) up to fourfold better than standalone materials and their physical mixture. Mechanistic studies highlight the importance of the unique design in boosting photocatalysis by effectively promoting interfacial photocarrier manipulation and utilization directly at the point-of-catalysis, without needing co-catalysts or sacrificial agents. This work presents enormous opportunities for developing advanced and green photocatalytic platforms for sustainable light-driven environmental, energy, and chemical applications.

2.
Angew Chem Int Ed Engl ; 63(8): e202317751, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179729

RESUMEN

Efficient green hydrogen production through electrocatalytic water splitting serves as a powerful catalyst for realizing a carbon-free hydrogen economy. However, current electrocatalytic designs face challenges such as poor hydrogen evolution reaction (HER) performance (Tafel slope, 100-140 mV dec-1 ) because water molecules are thermodynamically trapped within their extensive hydrogen bonding network. Herein, we drive efficient HER by manipulating the local water microenvironment near the electrocatalyst. This is achieved by functionalizing the nanoelectrocatalyst's surface with a monolayer of chaotropic molecules to chemically weaken water-water interactions directly at the point-of-catalysis. Notably, our chaotropic design demonstrates a superior Tafel slope (77 mV dec-1 ) and the lowest overpotential (0.3 V at 10 mA cm-2 ECSA ), surpassing its kosmotropic counterparts (which reinforces the water molecular network) and previously reported electrocatalytic designs by up to ≈2-fold and ≈3-fold, respectively. Comprehensive mechanistic investigations highlight the critical role of chaotropic surface chemistry in disrupting the water intermolecular network, thereby releasing free/weakly bound water molecules that strongly interact with the electrocatalyst to boost HER. Our study provides a unique molecular approach that can be readily integrated with emerging electrocatalytic materials to rapidly advance the electrosynthesis of green hydrogen, holding immense promise for sustainable chemical and energy applications.

3.
J Am Chem Soc ; 146(3): 1776-1782, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198597

RESUMEN

A new bioconjugation reagent containing silicon has been developed for the selective reaction with thiols. The inclusion of silicon significantly improves chemoselectivity and suppresses retro processes, thereby exceeding the capabilities of traditional reagents. The method is versatile and compatible with a broad range of thiols and unsaturated carbonyl compounds and yields moderate to high results. These reactions can be conducted under biocompatible conditions, thereby making them suitable for protein bioconjugation. The resulting conjugates display good stability in the presence of various biomolecules, which suggests their potential application for the synthesis of antibody-drug conjugates. Furthermore, the presence of a silicon moiety within the conjugated products opens up new avenues for drug release and bridging inorganics with other disciplines. This new class of silicon-containing thiol-specific bioconjugation reagents has significant implications for researchers working in bioanalytical science and medicinal chemistry and leads to innovative opportunities for advancing the field of bioconjugation research and medicinal chemistry.


Asunto(s)
Inmunoconjugados , Silicio , Compuestos de Sulfhidrilo/química , Indicadores y Reactivos , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA