Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37420656

RESUMEN

The voltage, current, temperature, humidity, pressure, flow, and hydrogen in the high-pressure proton exchange membrane water electrolyzer (PEMWE) can influence its performance and life. For example, if the temperature is too low to reach the working temperature of the membrane electrode assembly (MEA), the performance of the high-pressure PEMWE cannot be enhanced. However, if the temperature is too high, the MEA may be damaged. In this study, the micro-electro-mechanical systems (MEMS) technology was used to innovate and develop a high-pressure-resistant flexible seven-in-one (voltage, current, temperature, humidity, pressure, flow, and hydrogen) microsensor. It was embedded in the upstream, midstream, and downstream of the anode and cathode of the high-pressure PEMWE and the MEA for the real-time microscopic monitoring of internal data. The aging or damage of the high-pressure PEMWE was observed through the changes in the voltage, current, humidity, and flow data. The over-etching phenomenon was likely to occur when this research team used wet etching to make microsensors. The back-end circuit integration was unlikely to be normalized. Therefore, this study used lift-off process to further stabilize the quality of the microsensor. In addition, the PEMWE is more prone to aging and damage under high pressure, so its material selection is very important.


Asunto(s)
Hidrógeno , Protones , Electrodos , Temperatura , Agua
2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420761

RESUMEN

The proton exchange membrane water electrolyzer (PEMWE) requires a high operating voltage for hydrogen production to accelerate the decomposition of hydrogen molecules so that the PEMWE ages or fails. According to the prior findings of this R&D team, temperature and voltage can influence the performance or aging of PEMWE. As the PEMWE ages inside, the nonuniform flow distribution results in large temperature differences, current density drops, and runner plate corrosion. The mechanical stress and thermal stress resulting from pressure distribution nonuniformity will induce the local aging or failure of PEMWE. The authors of this study used gold etchant for etching, and acetone was used for the lift-off part. The wet etching method has the risk of over-etching, and the cost of the etching solution is also higher than that of acetone. Therefore, the authors of this experiment adopted a lift-off process. Using the flexible seven-in-one (voltage, current, temperature, humidity, flow, pressure, oxygen) microsensor developed by our team, after optimized design, fabrication, and reliability testing, it was embedded in PEMWE for 200 h. The results of our accelerated aging test prove that these physical factors affect the aging of PEMWE.


Asunto(s)
Protones , Agua , Acetona , Reproducibilidad de los Resultados , Hidrógeno
3.
Membranes (Basel) ; 13(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367777

RESUMEN

According to the latest literature, it is difficult to measure the multiple important physical parameters inside a proton battery stack accurately and simultaneously. The present bottleneck is external or single measurements, and the multiple important physical parameters (oxygen, clamping pressure, hydrogen, voltage, current, temperature, flow, and humidity) are interrelated, and have a significant impact on the performance, life, and safety of the proton battery stack. Therefore, this study used micro-electro-mechanical systems (MEMS) technology to develop a micro oxygen sensor and a micro clamping pressure sensor, which were integrated into the 6-in-1 microsensor developed by this research team. In order to improve the output and operability of microsensors, an incremental mask was redesigned to integrate the back end of the microsensor in combination with a flexible printed circuit. Consequently, a flexible 8-in-1 (oxygen, clamping pressure, hydrogen, voltage, current, temperature, flow, and humidity) microsensor was developed and embedded in a proton battery stack for real-time microscopic measurement. Multiple micro-electro-mechanical systems technologies were used many times in the process of developing the flexible 8-in-1 microsensor in this study, including physical vapor deposition (PVD), lithography, lift-off, and wet etching. The substrate was a 50 µm-thick polyimide (PI) film, characterized by good tensile strength, high temperature resistance, and chemical resistance. The microsensor electrode used Au as the main electrode and Ti as the adhesion layer.

4.
Micromachines (Basel) ; 14(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241655

RESUMEN

The vanadium redox flow battery (VRFB) can be used as a supporting technology for energy storage corresponding to wind and solar power generation. An aqueous vanadium compound solution can be used repeatedly. As the monomer is large, the flow uniformity of electrolytes in the battery is better, the service life is long, and the safety is better. Hence, large-scale electrical energy storage can be achieved. The instability and discontinuity of renewable energy can then be solved. If the VRFB precipitates in the channel, there will be a strong impact on the flow of vanadium electrolyte, and the channel could even be blocked as a result. The factors which influence its performance and life include electrical conductivity, voltage, current, temperature, electrolyte flow, and channel pressure. This study used micro-electro-mechanical systems (MEMS) technology to develop a flexible six-in-one microsensor which can be embedded in the VRFB for microscopic monitoring. The microsensor can perform real-time and simultaneous long-term monitoring of the physical parameters of VRFB, such as electrical conductivity, temperature, voltage, current, flow, and pressure to keep the VRFB system in the best operating condition.

5.
Micromachines (Basel) ; 14(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241663

RESUMEN

The design, fabrication, and measurement of a microelectromechanical system (MEMS) three-axis magnetic field sensor (MFS) based on the commercial complementary metal oxide semiconductor (CMOS) process are investigated. The MFS is a magnetic transistor type. The performance of the MFS was analyzed employing the semiconductor simulation software, Sentaurus TCAD. In order to decrease the cross-sensitivity of the three-axis MFS, the structure of the MFS is planed to accommodate two independent sensing components, a z-MFS utilized to sense magnetic field (M-F) in the z-direction and a y/x-MFS composed of a y-MFS and a x-MFS to be utilized to sense M-F in the y- and x-directions. The z-MFS incorporates four additional collectors to increase its sensitivity. The commercial 1P6M 0.18 µm CMOS process of the Taiwan Semiconductor Manufacturing Company (TSMC) is utilized to manufacture the MFS. Experiments depict that the MFS has a low cross-sensitivity of less than 3%. The sensitivities of z-, y-, and x-MFS are 237 mV/T, 485 mV/T, and 484 mV/T, respectively.

6.
Materials (Basel) ; 16(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37176390

RESUMEN

The proton battery has facilitated a new research direction for technologies related to fuel cells and energy storage. Our R&D team has developed a prototype of a proton battery stack, but there are still problems to be solved, such as leakage and unstable power generation. Moreover, it is unlikely that the multiple important physical parameters inside the proton battery stack can be measured accurately and simultaneously. At present, external or single measurements represent the bottleneck, yet the multiple important physical parameters (oxygen, hydrogen, voltage, current, temperature, flow, and humidity) are interrelated and have a significant impact on the performance, life, and safety of the proton battery stack. This research uses micro-electro-mechanical systems (MEMS) technology to develop a micro oxygen sensor and integrates the six-in-one microsensor that our R&D team previously developed in order to improve sensor output and facilitate overall operation by redesigning the incremental mask and having this co-operate with a flexible board for sensor back-end integration, completing the development of a flexible seven-in-one (oxygen, hydrogen, voltage, current, temperature, flow, and humidity) microsensor.

7.
Sensors (Basel) ; 23(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37177677

RESUMEN

In this study, the integrated three-in-one (temperature, humidity, and wind speed) microsensor was made through the technology of the Micro-electro-mechanical Systems (MEMS) to measure three important physical quantities of the internal environment of the cold air pipe of the Heating, Ventilation and Air Conditioning (HVAC) in the factory, plan the installation positions of the integrated three-in-one microsensor and commercially available wind speed sensor required by the internal environment of the cold air pipe, and conduct the actual 310-h long term test and comparison. In the experiment, it was also observed that the self-made micro wind speed sensor had higher stability compared to the commercially available wind speed sensor (FS7.0.1L.195). The self-made micro wind speed sensor has a variation range of ±200 mm/s, while the commercially available wind speed sensor a variation range of ±1000 mm/s. The commercially available wind speed sensor (FS7.0.1L.195) can only measure the wind speed; however, the self-made integrated three-in-one microsensor can conduct real-time measurements of temperature and humidity according to the environment at that time, and use different calibration curves to know the wind speed. As a result, it is more accurate and less costly than commercially available wind speed sensors. The material cost of self-made integrated three-in-one microsensor includes chemicals, equipment usage fees, and wires. In the future, factories may install a large number of self-made integrated three-in-one microsensors in place of commercially available wind speed sensors. Through real-time wireless measurements, the self-made integrated three-in-one microsensors can achieve the control optimization of the HVAC cold air pipe's internal environment to improve the quality of manufactured materials.

8.
Micromachines (Basel) ; 13(12)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36557497

RESUMEN

A wireless flexible air velocity microsensor was developed by using micro-electro-mechanical systems (MEMS) technology. Polyimide (PI) material was selected for the waterproof and oilproof requirements of the cold air duct environment of heating, ventilation, and air conditioning (HVAC) systems, and then a wireless flexible micro air velocity sensor was completed. To obtain real-time wireless measurements of the air velocity inside the cold air ducts of an HVAC system, and to create a measurements database, the deployment locations and quantity of micro air velocity sensors for the internal environment of the cold air ducts were planned. A field domain verification was performed to optimize the internal environment control of the cold air ducts of ventilation and air conditioning systems and to enhance the quality and reliability of process materials. This study realized real-time monitoring of velocity in the HVAC ducts of a chemical-fiber plant. A commercial velocity sensor (FS7.0.1L.195) was purchased and a micro-electro-mechanical systems (MEMS) approach was also used to develop a home-built micro air velocity sensor, to optimize the provision of the commercial sensors and our home-built micro air velocity sensor. Comparing the specifications of the two commercially available sensors with our home-built micro air velocity sensor, the results show that the home-built micro air velocity sensor has the advantages of fast response time, simultaneous sensing of three important physical quantities, and low cost.

9.
Membranes (Basel) ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36295677

RESUMEN

The high-pressure proton exchange membrane water electrolyzer (PEMWE) used for hydrogen production requires a high-operating voltage, which easily accelerates the decomposition of hydrogen molecules, resulting in the aging or failure of the high-pressure PEMWE. As the high-pressure PEMWE ages internally, uneven flow distribution can lead to large temperature differences, reduced current density, flow plate corrosion, and carbon paper cracking. In this study, a new type of micro hydrogen sensor is developed with integrated flexible seven-in-one (voltage; current; temperature; humidity; flow; pressure; and hydrogen) microsensors.

10.
Micromachines (Basel) ; 13(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36143993

RESUMEN

The adsorption and desorption of hydrogen in the magnesium powder hydrogen tank should take place in an environment with a temperature higher than 250 °C. High temperature and high strain will lead to reactive hydrogen leakage from the magnesium hydrogen tank due to tank rupture. Therefore, it is very important to monitor in real time the volume expansion, temperature change, and strain change on the surface of the magnesium hydrogen tank. In this study, the micro-electro-mechanical systems (MEMS) technology was used to innovatively integrate the micro-temperature sensor and the micro-strain sensor into a two-in-one flexible high-temperature micro-sensor with a small size and high sensitivity. It can be placed on the surface of the magnesium hydrogen tank for real-time micro-monitoring of the effect of hydrogen pressure and powder hydrogen absorption expansion on the strain of the hydrogen storage tank.

11.
Membranes (Basel) ; 12(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36005694

RESUMEN

A proton battery is a hybrid battery produced by combining a hydrogen fuel cell and a battery system in an attempt to obtain the advantages of both systems. As the battery life of a single proton battery is not good, the proton battery stack is developed by connecting in parallel, which can greatly improve the battery life of proton batteries. In order to obtain important information about the proton battery stack in real time, a flexible six-in-one microsensor is embedded in the proton battery stack. This study has successfully developed a health diagnostic tool for a proton battery stack using micro-electro-mechanical systems (MEMS) technology. This study also focused on the innovatively developed hydrogen microsensor, and integrated the voltage, current, temperature, humidity, and flow microsensors, as previously developed by our laboratory, to complete the flexible six-in-one microsensor. Six important internal physical parameters were simultaneously measured during the entire operation of the proton battery stack. It also established a complete database and monitor system in real time to detect the internal health status of the proton cell stack and observe if there were problems, such as water accumulation, aging, or failure, in order to understand the changes and effects of the various physical quantities of long-term operation. The study found that the proton batteries exhibited significant differences in the hydrogen absorb rates and hydrogen release rates. The ceramic circuit board used in the original sensor is replaced by a flexible board to improve problems such as peeling and breaking.

12.
Micromachines (Basel) ; 13(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36014115

RESUMEN

The vanadium redox flow battery (VRFB) system is an emerging energy storage technology with many advantages, such as high efficiency, long life, and high safety. However, during the power-generation process, if local high temperature is generated, the rate of ions passing through the membrane will increase. In addition, it will also cause vanadium pentoxide molecules (V2O5) to exist in the solid state. Once the solid is formed, it will affect the flow of the vanadium electrolyte, which will eventually cause the temperature of the VRFB to continue to rise. According to the various physical parameters of VRFB shown in the literature, they have a significant impact on the efficiency and life of VRFB. Therefore, this research proposes to develop flexible multifunction (voltage, current, temperature, and flow) micro-sensors using micro-electro-mechanical systems (MEMS) technology to meet the need for real-time micro-diagnosis in the VRFB. The device is embedded in the VRFB of real-time microscopic sensing and diagnosis. Its technical advantages are: (1) it can simultaneously locally measure four physical quantities of voltage, current, temperature, and flow; (2) due to its mall size it can be accurately embedded; (3) the high accuracy and sensitivity provides it with a fast response time; and (4) it possesses extreme environment resistance.

13.
Micromachines (Basel) ; 13(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36014180

RESUMEN

This study develops a TEMH (thermoelectric energy micro harvester) chip utilizing a commercial 0.18 µm CMOS (complementary metal oxide semiconductor) process. The chip contains a TEMH and temperature sensors. The TEMH is established using a series of 54 thermocouples. The use of the temperature sensors monitors the temperature of the thermocouples. One temperature sensor is set near the cold part of the thermocouples, and the other is set near the hot part of the thermocouples. The performance of the TEMH relies on the TD (temperature difference) at the CHP (cold and hot parts) of the thermocouples. The more the TD at the CHP of the thermocouples increases, the higher the output voltage and output power of the TEMH become. To obtain a higher TD, the cold part of the thermocouples is designed as a suspended structure and is combined with cooling sheets to increase heat dissipation. The cooling sheet is constructed of a stack of aluminum layers and is mounted above the cold part of the thermocouple. A finite element method software, ANSYS, is utilized to compute the temperature distribution of the TEMH. The TEMH requires a post-process to obtain the suspended thermocouple structure. The post-process utilizes an RIE (reactive ion etch) to etch the two sacrificial materials, which are silicon dioxide and silicon substrate. The results reveal that the structure of the thermocouples is completely suspended and does not show any injury. The measured results reveal that the output voltage of the TEMH is 32.5 mV when the TD between the CHP of the thermocouples is 4 K. The TEMH has a voltage factor of 8.93 mV/mm2K. When the TD between the CHP of the thermocouples is 4 K, the maximum output power of the TEMH is 4.67 nW. The TEMH has a power factor of 0.31 nW/mm2K2.

14.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888857

RESUMEN

The proton exchange membrane fuel cell (PEMFC) system is a highly efficient and environmentally friendly energy conversion technology. However, the local temperature, flow, and pressure inhomogeneity within the fuel cell during the electrochemical reaction process may lead to depletion of PEMFC material and uneven fuel distribution, thus affecting the performance and service life of high-temperature PEMFCs. In this study, micromachining technology is used to develop a three-in-one flexible micro-sensor that is resistant to a high-temperature electrochemical environment (120~200 °C). Appropriate materials and process parameters are used to protect the micro-sensor from failure or damage under long-term testing, and to conduct a real-time micro-monitor of the local temperature, flow, and pressure distribution inside high-temperature PEMFCs.

15.
Membranes (Basel) ; 12(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35054620

RESUMEN

During the electrochemical reaction of a high temperature proton exchange membrane fuel cell (HT-PEMFC), (in this paper HT-PEMFC means operating in the range of 120 to 200 °C) the inhomogeneity of temperature, flow rate, and pressure in the interior is likely to cause the reduction of ion conductivity or thermal stability weight loss of proton exchange membrane materials, and it is additionally likely to cause uneven fuel distribution, thereby affecting the working performance and service life of the HT-PEMFC. This study used micro-electro-mechanical systems (MEMS) technology to develop a flexible three-in-one microsensor which is resistant to high temperature electrochemical environments; we selected appropriate materials and process parameters to protect the microsensor from failure or damage under long-term tests. The proposed method can monitor the local temperature, flow rate, and pressure distribution in HT-PEMFC in real time.

16.
Membranes (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36676856

RESUMEN

The latest document indicates that the hydrogen/vanadium redox flow battery has better energy density and efficiency than the vanadium redox flow battery, as well as being low-cost and light-weight. In addition, the hydrogen, electrical conductivity, voltage, current, temperature, electrolyte flow, and runner pressure inside the hydrogen/vanadium redox flow battery can influence its performance and life. Therefore, this plan will try to step into the hydrogen/vanadium redox flow battery stack and improve the vanadium redox flow battery of this R&D team, whereof the electrolyte is likely to leak during assembling, and the strong acid corrosion environment is likely to age or fail the vanadium redox flow battery and microsensors. Micro-electro-mechanical systems (MEMS) are used, which are integrated with the flexible 7-in-1 microsensor, which is embedded in the hydrogen/vanadium redox flow battery for internal real-time microscopic sensing and diagnosis.

17.
Micromachines (Basel) ; 12(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34683266

RESUMEN

The proton battery is a very novel emerging research area with practicability. The proton battery has charging and discharging functions. It not only electrolyzes water: the electrolyzed protons can be stored but also released, which are combined with oxygen to generate electricity, and the hydrogen is not required; the hydrogen ions will be released from the battery. According to the latest document, the multiple important physical parameters (e.g., hydrogen, voltage, current, temperature, humidity, and flow) inside the proton battery are unlikely to be obtained accurately and the multiple important physical parameters mutually influence the data; they have critical effects on the performance, life, and health status of the proton battery. At present, the proton battery is measured only from the outside to indirectly diagnose the health status of battery; the actual situation inside the proton battery cannot be obtained instantly and accurately. This study uses micro-electro-mechanical systems (MEMS) technology to develop a low-temperature micro hydrogen sensor, which is used for monitoring the internal condition of the proton battery and judging whether or not there is hydrogen leakage, so as to enhance the safety.

18.
Membranes (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34436378

RESUMEN

According to the comparison between a proton battery and a proton exchange membrane fuel cell (PEMFC), the PEMFC requires oxygen and hydrogen for generating electricity, so a hydrogen tank is required, leading to larger volume of PEMFC. The proton battery can store hydrogen in the carbon layer, combined with the oxygen in the air to form water to generate electricity; thus, the battery cost and the space for a hydrogen tank can be reduced a lot, and it is used more extensively. As the proton battery is a new research area, multiple important physical quantities inside the proton battery should be further understood and monitored so as to enhance the performance of battery. The proton battery has the potential for practical applications, as well as water electrolysis, proton storage and discharge functions, and it can be produced without expensive metals. Therefore, in this study, we use micro-electro-mechanical systems (MEMS) technology to develop a diagnostic tool for the proton battery based on the developed microhydrogen sensor, integrated with the voltage, current, temperature, humidity and flow microsensors developed by this laboratory to complete a flexible integrated 6-in-1 microsensor, which is embedded in the proton battery to measure internal important physical parameters simultaneously so that the reaction condition in the proton battery can be mastered more accurately. In addition, the interaction of physical quantities of the proton battery are discussed so as to enhance the proton battery's performance.

19.
Membranes (Basel) ; 11(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918102

RESUMEN

The proton battery possesses water electrolysis, proton storage and discharging functions simultaneously, and it can be manufactured without expensive metals. Use the principle of proton exchange membrane water electrolysis for charging, store it in the activated carbon on the hydrogen side and use the principle of proton exchange membrane fuel cell for discharge when needed. According to the latest literature, it is difficult to obtain the exact important physical parameters inside the proton battery (e.g., voltage, current, temperature, humidity and flow), and the important physical parameters are correlated with each other, which have critical influence on the performance, lifetime and health status of the proton battery. At present, the condition of the proton battery is judged indirectly only by external measurement, the actual situation inside the proton battery cannot be obtained accurately and instantly. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible 5-in-1 microsensor, which is embedded in the proton battery to obtain five important physical parameters instantly, so that the condition inside the proton battery can be mastered more precisely, so as to prolong the battery life and enhance the proton battery performance.

20.
Micromachines (Basel) ; 12(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925429

RESUMEN

As the environmental considerations rise all over the world and under the drive of renewable energy policy, the society of hydrogen energy will come out gradually in the future. The proton exchange membrane water electrolyzer (PEMWE) is a very good hydrogen generator, characterized by low cost, high efficiency and zero emission of greenhouse gases. In this study, the micro temperature, humidity, flow, pressure, voltage, and current sensors were successfully integrated on a 50 µm thick Polyimide (PI) substrate by using micro-electro-mechanical systems (MEMS) technology. After the optimal design and process optimization of the flexible 6-in-1 microsensor, it was embedded in the PEMWE for a 500-h persistent effect test and internal real-time microscopic monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...