Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Methods ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724692

RESUMEN

The inability to scalably and precisely measure the activity of developmental cis-regulatory elements (CREs) in multicellular systems is a bottleneck in genomics. Here we develop a dual RNA cassette that decouples the detection and quantification tasks inherent to multiplex single-cell reporter assays. The resulting measurement of reporter expression is accurate over multiple orders of magnitude, with a precision approaching the limit set by Poisson counting noise. Together with RNA barcode stabilization via circularization, these scalable single-cell quantitative expression reporters provide high-contrast readouts, analogous to classic in situ assays but entirely from sequencing. Screening >200 regions of accessible chromatin in a multicellular in vitro model of early mammalian development, we identify 13 (8 previously uncharacterized) autonomous and cell-type-specific developmental CREs. We further demonstrate that chimeric CRE pairs generate cognate two-cell-type activity profiles and assess gain- and loss-of-function multicellular expression phenotypes from CRE variants with perturbed transcription factor binding sites. Single-cell quantitative expression reporters can be applied in developmental and multicellular systems to quantitatively characterize native, perturbed and synthetic CREs at scale, with high sensitivity and at single-cell resolution.

2.
Cell ; 187(10): 2411-2427.e25, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38608704

RESUMEN

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.


Asunto(s)
Sistemas CRISPR-Cas , Cromatina , Epigénesis Genética , Edición Génica , Cromatina/metabolismo , Cromatina/genética , Edición Génica/métodos , Humanos , Sistemas CRISPR-Cas/genética , Histonas/metabolismo , Células HEK293 , Factores de Transcripción/metabolismo
3.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405970

RESUMEN

Embryonic organoids are emerging as powerful models for studying early mammalian development. For example, stem cell-derived 'gastruloids' form elongating structures containing all three germ layers1-4. However, although elongated, human gastruloids do not morphologically resemble post-implantation embryos. Here we show that a specific, discontinuous regimen of retinoic acid (RA) robustly induces human gastruloids with embryo-like morphological structures, including a neural tube and segmented somites. Single cell RNA-seq (sc-RNA-seq) further reveals that these human 'RA-gastruloids' contain more advanced cell types than conventional gastruloids, including neural crest cells, renal progenitor cells, skeletal muscle cells, and, rarely, neural progenitor cells. We apply a new approach to computationally stage human RA-gastruloids relative to somite-resolved mouse embryos, early human embryos and other gastruloid models, and find that the developmental stage of human RA-gastruloids is comparable to that of E9.5 mouse embryos, although some cell types show greater or lesser progression. We chemically perturb WNT and BMP signaling in human RA-gastruloids and find that these signaling pathways regulate somite patterning and neural tube length, respectively, while genetic perturbation of the transcription factors PAX3 and TBX6 markedly compromises the formation of neural crest and somites/renal cells, respectively. Human RA-gastruloids complement other embryonic organoids in serving as a simple, robust and screenable model for decoding early human embryogenesis.

4.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090511

RESUMEN

Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the cis- chromatin environment on prime editing efficiency. Using a newly developed and highly sensitive method for mapping the genomic locations of a randomly integrated "sensor", we identify specific epigenetic features that strongly correlate with the highly variable efficiency of prime editing across different genomic locations. Next, to assess the interaction of trans -acting factors with the cis -chromatin environment, we develop and apply a pooled genetic screening approach with which the impact of knocking down various DNA repair factors on prime editing efficiency can be stratified by cis -chromatin context. Finally, we demonstrate that we can dramatically modulate the efficiency of prime editing through epigenome editing, i.e. altering chromatin state in a locus-specific manner in order to increase or decrease the efficiency of prime editing at a target site. Looking forward, we envision that the insights and tools described here will broaden the range of both basic research and therapeutic contexts in which prime editing is useful.

5.
Nature ; 608(7921): 98-107, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794474

RESUMEN

DNA is naturally well suited to serve as a digital medium for in vivo molecular recording. However, contemporary DNA-based memory devices are constrained in terms of the number of distinct 'symbols' that can be concurrently recorded and/or by a failure to capture the order in which events occur1. Here we describe DNA Typewriter, a general system for in vivo molecular recording that overcomes these and other limitations. For DNA Typewriter, the blank recording medium ('DNA Tape') consists of a tandem array of partial CRISPR-Cas9 target sites, with all but the first site truncated at their 5' ends and therefore inactive. Short insertional edits serve as symbols that record the identity of the prime editing guide RNA2 mediating the edit while also shifting the position of the 'type guide' by one unit along the DNA Tape, that is, sequential genome editing. In this proof of concept of DNA Typewriter, we demonstrate recording and decoding of thousands of symbols, complex event histories and short text messages; evaluate the performance of dozens of orthogonal tapes; and construct 'long tape' potentially capable of recording as many as 20 serial events. Finally, we leverage DNA Typewriter in conjunction with single-cell RNA-seq to reconstruct a monophyletic lineage of 3,257 cells and find that the Poisson-like accumulation of sequential edits to multicopy DNA tape can be maintained across at least 20 generations and 25 days of in vitro clonal expansion.


Asunto(s)
ADN , Edición Génica , Genoma , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica/métodos , Genoma/genética , ARN Guía de Kinetoplastida/genética , RNA-Seq , Análisis de la Célula Individual , Factores de Tiempo
6.
Nat Biotechnol ; 40(2): 218-226, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34650269

RESUMEN

Current methods to delete genomic sequences are based on clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and pairs of single-guide RNAs (sgRNAs), but can be inefficient and imprecise, with errors including small indels as well as unintended large deletions and more complex rearrangements. In the present study, we describe a prime editing-based method, PRIME-Del, which induces a deletion using a pair of prime editing sgRNAs (pegRNAs) that target opposite DNA strands, programming not only the sites that are nicked but also the outcome of the repair. PRIME-Del achieves markedly higher precision than CRISPR-Cas9 and sgRNA pairs in programming deletions up to 10 kb, with 1-30% editing efficiency. PRIME-Del can also be used to couple genomic deletions with short insertions, enabling deletions with junctions that do not fall at protospacer-adjacent motif sites. Finally, extended expression of prime editing components can substantially enhance efficiency without compromising precision. We anticipate that PRIME-Del will be broadly useful for precise, flexible programming of genomic deletions, epitope tagging and, potentially, programming genomic rearrangements.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica/métodos , Genoma , Genómica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
7.
Genome Biol ; 22(1): 279, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579774

RESUMEN

BACKGROUND: Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS: Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS: Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Inactivación del Cromosoma X , Alelos , Animales , Ciclo Celular , Línea Celular , Núcleo Celular/genética , Femenino , Genoma , Masculino , Ratones , RNA-Seq , Análisis de la Célula Individual , Cromosoma X/química
8.
PLoS Comput Biol ; 16(9): e1008173, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32946435

RESUMEN

Single-cell Hi-C (scHi-C) interrogates genome-wide chromatin interaction in individual cells, allowing us to gain insights into 3D genome organization. However, the extremely sparse nature of scHi-C data poses a significant barrier to analysis, limiting our ability to tease out hidden biological information. In this work, we approach this problem by applying topic modeling to scHi-C data. Topic modeling is well-suited for discovering latent topics in a collection of discrete data. For our analysis, we generate nine different single-cell combinatorial indexed Hi-C (sci-Hi-C) libraries from five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1), consisting over 19,000 cells. We demonstrate that topic modeling is able to successfully capture cell type differences from sci-Hi-C data in the form of "chromatin topics." We further show enrichment of particular compartment structures associated with locus pairs in these topics.


Asunto(s)
Cromatina , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Línea Celular , Cromatina/química , Cromatina/genética , Análisis por Conglomerados , Biblioteca de Genes , Humanos , Procesamiento de Lenguaje Natural
9.
ACM BCB ; 2020: 1-10, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33954299

RESUMEN

Integrating single-cell measurements that capture different properties of the genome is vital to extending our understanding of genome biology. This task is challenging due to the lack of a shared axis across datasets obtained from different types of single-cell experiments. For most such datasets, we lack corresponding information among the cells (samples) and the measurements (features). In this scenario, unsupervised algorithms that are capable of aligning single-cell experiments are critical to learning an in silico co-assay that can help draw correspondences among the cells. Maximum mean discrepancy-based manifold alignment (MMD-MA) is such an unsupervised algorithm. Without requiring correspondence information, it can align single-cell datasets from different modalities in a common shared latent space, showing promising results on simulations and a small-scale single-cell experiment with 61 cells. However, it is essential to explore the applicability of this method to larger single-cell experiments with thousands of cells so that it can be of practical interest to the community. In this paper, we apply MMD-MA to two recent datasets that measure transcriptome and chromatin accessibility in ~2000 single cells. To scale the runtime of MMD-MA to a more substantial number of cells, we extend the original implementation to run on GPUs. We also introduce a method to automatically select one of the user-defined parameters, thus reducing the hyperparameter search space. We demonstrate that the proposed extensions allow MMD-MA to accurately align state-of-the-art single-cell experiments.

10.
Methods ; 170: 61-68, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536770

RESUMEN

The highly dynamic nature of chromosome conformation and three-dimensional (3D) genome organization leads to cell-to-cell variability in chromatin interactions within a cell population, even if the cells of the population appear to be functionally homogeneous. Hence, although Hi-C is a powerful tool for mapping 3D genome organization, this heterogeneity of chromosome higher order structure among individual cells limits the interpretive power of population based bulk Hi-C assays. Moreover, single-cell studies have the potential to enable the identification and characterization of rare cell populations or cell subtypes in a heterogeneous population. However, it may require surveying relatively large numbers of single cells to achieve statistically meaningful observations in single-cell studies. By applying combinatorial cellular indexing to chromosome conformation capture, we developed single-cell combinatorial indexed Hi-C (sci-Hi-C), a high throughput method that enables mapping chromatin interactomes in large number of single cells. We demonstrated the use of sci-Hi-C data to separate cells by karytoypic and cell-cycle state differences and to identify cellular variability in mammalian chromosomal conformation. Here, we provide a detailed description of method design and step-by-step working protocols for sci-Hi-C.


Asunto(s)
Mapeo Cromosómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Núcleo Celular/genética , Separación Celular/métodos , Cromatina/genética , Cromatina/aislamiento & purificación , Cromatina/metabolismo , Simulación por Computador , Biblioteca de Genes , Humanos , Ratones , Conformación de Ácido Nucleico
11.
Cell ; 174(5): 1309-1324.e18, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078704

RESUMEN

We applied a combinatorial indexing assay, sci-ATAC-seq, to profile genome-wide chromatin accessibility in ∼100,000 single cells from 13 adult mouse tissues. We identify 85 distinct patterns of chromatin accessibility, most of which can be assigned to cell types, and ∼400,000 differentially accessible elements. We use these data to link regulatory elements to their target genes, to define the transcription factor grammar specifying each cell type, and to discover in vivo correlates of heterogeneity in accessibility within cell types. We develop a technique for mapping single cell gene expression data to single-cell chromatin accessibility data, facilitating the comparison of atlases. By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, we identify cell-type-specific enrichments of the heritability signal for hundreds of complex traits. These data define the in vivo landscape of the regulatory genome for common mammalian cell types at single-cell resolution.


Asunto(s)
Cromatina/química , Análisis de la Célula Individual/métodos , Animales , Análisis por Conglomerados , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción
12.
Methods ; 142: 59-73, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29382556

RESUMEN

The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods.


Asunto(s)
Mapeo Cromosómico/métodos , Desoxirribonucleasa I/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Imagenología Tridimensional/métodos , Imagen Molecular/métodos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/genética , Mapeo Cromosómico/instrumentación , Reactivos de Enlaces Cruzados/química , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/metabolismo , Desoxirribonucleasa I/química , Formaldehído/química , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Imagenología Tridimensional/instrumentación , Imagen Molecular/instrumentación , Técnicas de Cultivo de Tejidos/instrumentación , Técnicas de Cultivo de Tejidos/métodos , Secuenciación Completa del Genoma/instrumentación , Secuenciación Completa del Genoma/métodos
13.
Sci Rep ; 7(1): 16943, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208983

RESUMEN

A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an Integrative System), which allows for the joint analysis of different types of genomic aberrations from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify the mutations related to treatment resistance. We implement our model via an extensible modeling platform, which makes our approach open, reproducible, and easy for others to extend.


Asunto(s)
Biopsia/métodos , Modelos Biológicos , Neoplasias/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Algoritmos , Teorema de Bayes , Evolución Clonal , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Mutación , Neoplasias/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Análisis de la Célula Individual , Transcriptoma , Neoplasias de la Mama Triple Negativas/patología
14.
Science ; 357(6352): 661-667, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28818938

RESUMEN

To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Núcleo Celular/genética , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Inmunoprecipitación de Cromatina , Células HEK293 , Humanos , Larva/genética , Ratones , Células 3T3 NIH , Neuronas/metabolismo , ARN/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética
15.
Am J Hum Genet ; 101(2): 192-205, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712454

RESUMEN

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion ("ScanDel"). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica/genética , Hipoxantina Fosforribosiltransferasa/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Eliminación de Secuencia/genética , Línea Celular , Células HEK293 , Humanos , Hipoxantina Fosforribosiltransferasa/biosíntesis , Síndrome de Lesch-Nyhan/genética , ARN Guía de Kinetoplastida/genética , Tioguanina/metabolismo
17.
Genes Chromosomes Cancer ; 55(3): 278-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26650888

RESUMEN

Investigation of the genetic lesions underlying classical Hodgkin lymphoma (CHL) has been challenging due to the rarity of Hodgkin and Reed-Sternberg (HRS) cells, the pathognomonic neoplastic cells of CHL. In an effort to catalog more comprehensively recurrent copy number alterations occurring during oncogenesis, we investigated somatic alterations involved in CHL using whole-genome sequencing-mediated copy number analysis of purified HRS cells. We performed low-coverage sequencing of small numbers of intact HRS cells and paired non-neoplastic B lymphocytes isolated by flow cytometric cell sorting from 19 primary cases, as well as two commonly used HRS-derived cell lines (KM-H2 and L1236). We found that HRS cells contain strikingly fewer copy number abnormalities than CHL cell lines. A subset of cases displayed nonintegral chromosomal copy number states, suggesting internal heterogeneity within the HRS cell population. Recurrent somatic copy number alterations involving known factors in CHL pathogenesis were identified (REL, the PD-1 pathway, and TNFAIP3). In eight cases (42%) we observed recurrent copy number loss of chr1:2,352,236-4,574,271, a region containing the candidate tumor suppressor TNFRSF14. Using flow cytometry, we demonstrated reduced TNFRSF14 expression in HRS cells from 5 of 22 additional cases (23%) and in two of three CHL cell lines. These studies suggest that TNFRSF14 dysregulation may contribute to the pathobiology of CHL in a subset of cases.


Asunto(s)
Enfermedad de Hodgkin/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Enfermedad de Hodgkin/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Miembro 14 de Receptores del Factor de Necrosis Tumoral/biosíntesis , Miembro 14 de Receptores del Factor de Necrosis Tumoral/deficiencia , Células de Reed-Sternberg
18.
PLoS Genet ; 11(7): e1005413, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26230489

RESUMEN

Bacterial whole genome sequencing holds promise as a disruptive technology in clinical microbiology, but it has not yet been applied systematically or comprehensively within a clinical context. Here, over the course of one year, we performed prospective collection and whole genome sequencing of nearly all bacterial isolates obtained from a tertiary care hospital's intensive care units (ICUs). This unbiased collection of 1,229 bacterial genomes from 391 patients enables detailed exploration of several features of clinical pathogens. A sizable fraction of isolates identified as clinically relevant corresponded to previously undescribed species: 12% of isolates assigned a species-level classification by conventional methods actually qualified as distinct, novel genomospecies on the basis of genomic similarity. Pan-genome analysis of the most frequently encountered pathogens in the collection revealed substantial variation in pan-genome size (1,420 to 20,432 genes) and the rate of gene discovery (1 to 152 genes per isolate sequenced). Surprisingly, although potential nosocomial transmission of actively surveilled pathogens was rare, 8.7% of isolates belonged to genomically related clonal lineages that were present among multiple patients, usually with overlapping hospital admissions, and were associated with clinically significant infection in 62% of patients from which they were recovered. Multi-patient clonal lineages were particularly evident in the neonatal care unit, where seven separate Staphylococcus epidermidis clonal lineages were identified, including one lineage associated with bacteremia in 5/9 neonates. Our study highlights key differences in the information made available by conventional microbiological practices versus whole genome sequencing, and motivates the further integration of microbial genome sequencing into routine clinical care.


Asunto(s)
Bacterias/aislamiento & purificación , Infecciones Bacterianas/transmisión , Genoma Bacteriano/genética , Unidades de Cuidados Intensivos , Microbiota/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/genética , Infecciones Bacterianas/microbiología , Técnicas de Tipificación Bacteriana , Biodiversidad , Infección Hospitalaria/microbiología , Infección Hospitalaria/transmisión , ADN Bacteriano/genética , Femenino , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Estudios Prospectivos , Centros de Atención Terciaria , Adulto Joven
19.
Genome Med ; 7(1): 35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26019723

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) enables profiling of embryos for genetic disorders prior to implantation. The majority of PGD testing is restricted in the scope of variants assayed or by the availability of extended family members. While recent advances in single cell sequencing show promise, they remain limited by bias in DNA amplification and the rapid turnaround time (<36 h) required for fresh embryo transfer. Here, we describe and validate a method for inferring the inherited whole genome sequence of an embryo for preimplantation genetic diagnosis (PGD). METHODS: We combine haplotype-resolved, parental genome sequencing with rapid embryo genotyping to predict the whole genome sequence of a day-5 human embryo in a couple at risk of transmitting alpha-thalassemia. RESULTS: Inheritance was predicted at approximately 3 million paternally and/or maternally heterozygous sites with greater than 99% accuracy. Furthermore, we successfully phase and predict the transmission of an HBA1/HBA2 deletion from each parent. CONCLUSIONS: Our results suggest that preimplantation whole genome prediction may facilitate the comprehensive diagnosis of diseases with a known genetic basis in embryos.

20.
Nat Methods ; 12(1): 71-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25437436

RESUMEN

High-throughput methods based on chromosome conformation capture have greatly advanced our understanding of the three-dimensional (3D) organization of genomes but are limited in resolution by their reliance on restriction enzymes. Here we describe a method called DNase Hi-C for comprehensively mapping global chromatin contacts. DNase Hi-C uses DNase I for chromatin fragmentation, leading to greatly improved efficiency and resolution over that of Hi-C. Coupling this method with DNA-capture technology provides a high-throughput approach for targeted mapping of fine-scale chromatin architecture. We applied targeted DNase Hi-C to characterize the 3D organization of 998 large intergenic noncoding RNA (lincRNA) promoters in two human cell lines. Our results revealed that expression of lincRNAs is tightly controlled by complex mechanisms involving both super-enhancers and the Polycomb repressive complex. Our results provide the first glimpse of the cell type-specific 3D organization of lincRNA genes.


Asunto(s)
Cromatina/fisiología , ARN no Traducido/genética , Cromatina/química , Cromatina/ultraestructura , Mapeo Cromosómico , Desoxirribonucleasa I/metabolismo , Genoma , Humanos , Células K562 , Conformación Proteica , Elementos Reguladores de la Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...