Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325088

RESUMEN

An autaptic synapse (or 'autapse') is a functional connection between a neuron and itself, commonly used in studying the molecular mechanisms underlying synaptic transmission and plasticity in central neurons. Most previous studies on autonomic synaptic functions have relied on spontaneous connections among neurons in mass cultures. However, growing evidence supports the utility of microcultures cultivating autaptic neurons for examining cholinergic transmission within sympathetic ganglia. Despite these advancements, standardized protocols for culturing autaptic sympathetic neurons have yet to be established. Drawing on historical literature, this study delineates optimal experimental conditions to efficiently and reliably produce cholinergic synapses in sympathetic neurons within a short time frame. Our research emphasizes five key factors: (i) the generation of uniformly sized microislands of growth permissive substrates; (ii) the addition of nerve growth factor, ciliary neurotrophic factor (CNTF), and serum to the culture medium; (iii) independence from specific serum and neuronal medium types; (iv) the reciprocal roles of CNTF and glial cells; and (v) the promotion of cholinergic synaptogenesis in SCG neurons through indirect glia co-cultures, rather than direct glial feeder layer cultures. In conclusion, glia-free monocultures of SCG neurons are relatively simple to prepare and yield robust and reliable synaptic currents. This makes them an effective model system for straightforwardly addressing fundamental questions about neurogenic mechanisms involved in cholinergic synaptic transmission in autonomic ganglia. Furthermore, autaptic culture experiments could eventually be implemented to investigate the roles of functional neuron-satellite glia units in regulating cholinergic functions under physiological and pathological conditions.

2.
Biomedicines ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39200187

RESUMEN

Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⁺ channels were significantly downregulated in SG neurons, while M-type K⁺ channels were upregulated, with downregulation of the N- and L-type Ca2⁺ channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions.

3.
J Biol Chem ; 296: 100709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901490

RESUMEN

Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects-or synaptopathies-are at the basis of many neurological and psychiatric disorders. Collybistin (CB), a brain-specific guanine nucleotide exchange factor, is essential for the formation of γ-aminobutyric acidergic (GABAergic) postsynapses in defined regions of the mammalian forebrain, including the hippocampus and basolateral amygdala. This process depends on a direct interaction of CB with the scaffolding protein gephyrin, which leads to the redistribution of gephyrin into submembranous clusters at nascent inhibitory synapses. Strikingly, synaptic clustering of gephyrin and GABAA type A receptors (GABAARs) in several brain regions, including the cerebral cortex and certain thalamic areas, is unperturbed in CB-deficient mice, indicating that the formation of a substantial subset of inhibitory postsynapses must be controlled by gephyrin-interacting proteins other than CB. Previous studies indicated that the α3 subunit of GABAARs (GABAAR-α3) binds directly and with high affinity to gephyrin. Here, we provide evidence (i) that a homooligomeric GABAAR-α3A343W mutant induces the formation of submembranous gephyrin clusters independently of CB in COS-7 cells, (ii) that gephyrin clustering is unaltered in the neuronal subpopulations endogenously expressing the GABAAR-α3 in CB-deficient brains, and (iii) that exogenous expression of GABAAR-α3 partially rescues impaired gephyrin clustering in CB-deficient hippocampal neurons. Our results identify an important role of GABAAR-α3 in promoting gephyrin-mediated and CB-independent formation of inhibitory postsynapses.


Asunto(s)
Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Neuronas GABAérgicas/citología , Hipocampo/citología , Proteínas de la Membrana/metabolismo , Ratones
4.
Brain Res ; 1753: 147257, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33422529

RESUMEN

Traumatic brain injury (TBI) frequently causes cardiac autonomic dysfunction (CAD), irrespective of its severity, which is associated with an increased morbidity and mortality in patients. Despite the significance of probing the cellular mechanism underlying TBI-induced CAD, animal studies on this mechanism are lacking. In the current study, we tested whether TBI-induced CAD is associated with functional plasticity in cardiac efferent neurons. In this regard, TBI was induced by a controlled cortical impact in rats. Assessment of heart rate variability and baroreflex sensitivity indicated that CAD was developed in the sub-acute period after moderate and severe TBI. The cell excitability was increased in the stellate ganglion (SG) neurons and decreased in the intracardiac ganglion (ICG) neurons in TBI rats, compared with the sham-operated rats. The transient A-type K+ (KA) currents, but not the delayed rectifying K+ currents were significantly decreased in SG neurons in TBI rats, compared with sham-operated rats. Consistent with these electrophysiological data, the transcripts encoding the Kv4 α subunits were significantly downregulated in SG neurons in TBI rats, compared with sham-operated rats. TBI causes downregulation and upregulation of M-type K+ (KM) currents and the KCNQ2 mRNA transcripts, which may contribute to the hyperexcitability of the SG neurons and the hypoexcitability of the ICG neurons, respectively. In conclusion, the key cellular mechanism underlying the TBI-induced CAD may be the functional plasticity of the cardiac efferent neurons, which is caused by the regulation of the KA and/or KM currents.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Corazón/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/fisiología , Masculino , Neuronas/fisiología , Ratas Sprague-Dawley
5.
Cell Rep ; 30(11): 3632-3643.e8, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187536

RESUMEN

Although similar in molecular composition, synapses can exhibit strikingly distinct functional transmitter release and plasticity characteristics. To determine whether ultrastructural differences co-define this functional heterogeneity, we combine hippocampal organotypic slice cultures, high-pressure freezing, freeze substitution, and 3D-electron tomography to compare two functionally distinct synapses: hippocampal Schaffer collateral and mossy fiber synapses. We find that mossy fiber synapses, which exhibit a lower release probability and stronger short-term facilitation than Schaffer collateral synapses, harbor lower numbers of docked synaptic vesicles at active zones and a second pool of possibly tethered vesicles in their vicinity. Our data indicate that differences in the ratio of docked versus tethered vesicles at active zones contribute to distinct functional characteristics of synapses.


Asunto(s)
Hipocampo/fisiología , Hipocampo/ultraestructura , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musgosas del Hipocampo/fisiología , Fibras Musgosas del Hipocampo/ultraestructura , Neurotransmisores/metabolismo , Técnicas de Cultivo de Órganos , Vesículas Secretoras/fisiología , Vesículas Secretoras/ultraestructura , Vesículas Sinápticas/ultraestructura , Fijación del Tejido
6.
Cell Rep ; 30(10): 3261-3269.e4, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160535

RESUMEN

Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.


Asunto(s)
Adaptación Ocular , Proteínas de Unión al Calcio/metabolismo , Potenciales Evocados/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sensación , Vesículas Sinápticas/metabolismo , Corteza Visual/fisiología , Animales , Eliminación de Gen , Ratones Noqueados , Neuronas/metabolismo , Transmisión Sináptica
7.
Cell Rep ; 27(7): 2212-2228.e7, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091457

RESUMEN

iPSC-derived human neurons are expected to revolutionize studies on brain diseases, but their functional heterogeneity still poses a problem. Key sources of heterogeneity are the different cell culture systems used. We show that an optimized autaptic culture system, with single neurons on astrocyte feeder islands, is well suited to culture, and we analyze human iPSC-derived neurons in a standardized, systematic, and reproducible manner. Using classically differentiated and transcription factor-induced human glutamatergic and GABAergic neurons, we demonstrate that key features of neuronal morphology and function, including dendrite structure, synapse number, membrane properties, synaptic transmission, and short-term plasticity, can be assessed with substantial throughput and reproducibility. We propose our optimized autaptic culture system as a tool to study functional features of human neurons, particularly in the context of disease phenotypes and experimental therapy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Neuronas GABAérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Astrocitos/citología , Astrocitos/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Dendritas/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Ratas Wistar , Reproducibilidad de los Resultados
8.
Neuron ; 95(3): 591-607.e10, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28772123

RESUMEN

Munc13 catalyzes the transit of syntaxin from a closed complex with Munc18 into the ternary SNARE complex. Here we report a new function of Munc13, independent of Munc18: it promotes the proper syntaxin/synaptobrevin subconfiguration during assembly of the ternary SNARE complex. In cooperation with Munc18, Munc13 additionally ensures the proper syntaxin/SNAP-25 subconfiguration. In a reconstituted fusion assay with SNAREs, complexin, and synaptotagmin, inclusion of both Munc13 and Munc18 quadruples the Ca2+-triggered amplitude and achieves Ca2+ sensitivity at near-physiological concentrations. In Munc13-1/2 double-knockout neurons, expression of a constitutively open mutant of syntaxin could only minimally restore neurotransmitter release relative to Munc13-1 rescue. Together, the physiological functions of Munc13 may be related to regulation of proper SNARE complex assembly.


Asunto(s)
Exocitosis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Transmisión Sináptica/fisiología
9.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1088-101, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984890

RESUMEN

Cardiovascular autonomic dysfunction, which is manifested by an impairment of the arterial baroreflex, is prevalent irrespective of etiology and contributes to the increased morbidity and mortality in cirrhotic patients. However, the cellular mechanisms that underlie the cirrhosis-impaired arterial baroreflex remain unknown. In the present study, we examined whether the cirrhosis-impaired arterial baroreflex is attributable to the dysfunction of aortic baroreceptor (AB) neurons. Biliary and nonbiliary cirrhotic rats were generated via common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Histological and molecular biological examinations confirmed the development of fibrosis in the livers of both cirrhotic rat models. The heart rate changes during phenylephrine-induced baroreceptor activation indicated that baroreflex sensitivity was blunted in the CBDL and TAA rats. Under the current-clamp mode of the patch-clamp technique, cell excitability was recorded in DiI-labeled AB neurons. The number of action potential discharges in the A- and C-type AB neurons was significantly decreased because of the increased rheobase and threshold potential in the CBDL and TAA rats compared with sham-operated rats. Real-time PCR and Western blotting indicated that the NaV1.7, NaV1.8, and NaV1.9 transcripts and proteins were significantly downregulated in the nodose ganglion neurons from the CBDL and TAA rats compared with the sham-operated rats. Consistent with these molecular data, the tetrodotoxin-sensitive NaV currents and the tetrodotoxin-resistant NaV currents were significantly decreased in A- and C-type AB neurons, respectively, from the CBDL and TAA rats compared with the sham-operated rats. Taken together, these findings implicate a key cellular mechanism in the cirrhosis-impaired arterial baroreflex.


Asunto(s)
Barorreflejo , Presión Sanguínea , Insuficiencia Cardíaca/fisiopatología , Cirrosis Hepática/fisiopatología , Presorreceptores/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Enfermedades del Sistema Nervioso Autónomo , Insuficiencia Cardíaca/etiología , Activación del Canal Iónico , Cirrosis Hepática/complicaciones , Masculino , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo
10.
Biochem Biophys Res Commun ; 463(4): 632-7, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26043693

RESUMEN

We investigated whether endogenous neuregulin 1 (NRG1) is released in a soluble form (called sNRG1) and upregulates expression of nicotinic acetylcholine receptor (nAChR) in autonomic major pelvic ganglion (MPG) neurons of adult rats. To elicit the release of sNRG1, either the hypogastric nerve or the pelvic nerve was electrically stimulated. Then, the MPG-conditioned medium (CM) was subjected to western blotting using an antibody directed against the N-terminal ectodomain of NRG1. Both sympathetic and parasympathetic nerve activation elicited the release of sNRG1 from MPG neurons in a frequency-dependent manner. The sNRG1 release was also induced by treatment of MPG neurons with either high KCl or neurotrophic factors. The biological activity of the released sNRG1 was detected by tyrosine phosphorylation (p185) of the ErbB2 receptors in MPG neurons. When MPG neurons were incubated for 6 h in the CM, the protein level of the nAChR α3 subunit and ACh-induced current (IACh) density were significantly increased. The CM-induced changes in IACh was abolished by a selective ErbB2 tyrosine kinase inhibitor. Taken together, these data suggest that NRG1 functions as an endogenous regulator of nAChR expression in adult MPG neurons.


Asunto(s)
Ganglión/fisiopatología , Neurregulina-1/fisiología , Neuronas/fisiología , Pelvis , Receptores Nicotínicos/fisiología , Anciano , Animales , Estimulación Eléctrica , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
11.
Brain Res ; 1602: 111-8, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25625357

RESUMEN

Pelvic ganglion (PG) neurons relay sympathetic and parasympathetic signals to the lower urinary tract, comprising the urinary bladder and bladder outlet, and are thus essential for both storage and voiding reflexes. Autonomic transmission is mediated by activation of the nicotinic acetylcholine receptor (nAChR) in PG neurons. Previously, bladder outlet obstruction (BOO), secondary to benign prostatic hyperplasia, was found to increase soma sizes of bladder-projecting PG neurons. To date, however, it remains unknown whether these morphological changes are accompanied by functional plasticity in PG neurons. In the present study, we investigated whether BOO alters acetylcholine receptor (nAChR) transcript expression and current density in bladder PG neurons. Partial ligation of the rat urethra for six weeks induced detrusor overactivity (DO), as observed during cystometrical measurement. In rats exhibiting DO, membrane capacitance of parasympathetic bladder PG neurons was selectively increased. Real-time PCR analysis revealed that BOO enhanced the expression of the transcripts encoding the nAChR α3 and ß4 subunits in PG neurons. Notably, BOO significantly increased ACh-evoked current density in parasympathetic bladder PG neurons, whereas no changes were observed in sympathetic bladder and parasympathetic penile PG neurons. In addition, other ligand-gated ionic currents were immune to BOO in bladder PG neurons. Taken together, these data suggest that BOO causes upregulation of nAChR in parasympathetic bladder PG neurons, which in turn may potentiate ganglionic transmission and contribute to the development of DO.


Asunto(s)
Neuronas/metabolismo , Receptores Nicotínicos/metabolismo , Obstrucción del Cuello de la Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria/diagnóstico por imagen , Animales , Membrana Celular/fisiología , Modelos Animales de Enfermedad , Capacidad Eléctrica , Masculino , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/patología , Fibras Parasimpáticas Posganglionares/metabolismo , Fibras Parasimpáticas Posganglionares/patología , Técnicas de Placa-Clamp , Pene/inervación , Cintigrafía , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Fibras Simpáticas Posganglionares/metabolismo , Fibras Simpáticas Posganglionares/patología , Regulación hacia Arriba , Vejiga Urinaria/patología , Obstrucción del Cuello de la Vejiga Urinaria/patología , Vejiga Urinaria Hiperactiva/patología
12.
J Neurochem ; 124(4): 502-13, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23199222

RESUMEN

We investigated effects of Neuregulin 1 (NRG1) on the expression of nicotinic acetylcholine receptor (nAChR) in major pelvic ganglion (MPG) from adult rat. MPG neurons were found to express transcripts for type I and III NRG1s as well as α and ß-type epidermal growth factor (EGF)-like domains. Of the four ErbB receptor isoforms, ErbB1, ErbB2, and ErbB3 were expressed in MPG neurons. Treating MPG with NRG1ß significantly increased the transcript and protein level of the nAChR α3 and ß4 subunits. Consistent with these molecular data, nicotinic currents (I(ACh) ) were significantly up-regulated in NRG1ß-treated sympathetic and parasympathetic MPG neurons. In contrast, the type III NRG1 and the α form of the NRG1 failed to alter the I(ACh) . Inhibition of the ErbB2 tyrosine kinase completely abolished the effects of NRG1ß on the I(ACh) . Stimulation of the ErbB receptors by NRG1ß activated the phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Immunoblot analysis revealed that PI3K-mediated activation of Akt preceded Erk1/2 activation in NRG1ß-treated MPG neurons. Furthermore, specific PI3K inhibitors abrogated the phosphorylation of Erk1/2, while inhibition of MEK did not prevent the phosphorylation of Akt. Taken together, these findings suggest that NRG1 up-regulates nAChR expression via the ErbB2/ErbB3-PI3K-MAPK signaling cascade and may be involved in maintaining the ACh-mediated synaptic transmission in adult autonomic ganglia.


Asunto(s)
Ganglios Autónomos/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neurregulina-1/farmacología , Neuronas/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Acetilcolina/farmacología , Animales , Cicloheximida/farmacología , Inhibidores Enzimáticos/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Factores de Tiempo
13.
Neurosci Lett ; 501(1): 55-9, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21782342

RESUMEN

Pelvic ganglia (PG) play critical roles in relaying sympathetic and parasympathetic information from the spinal cord to the penile vasculature and, controlling the penile reflex. Animal studies have shown that androgen deprivation by castration causes erectile dysfunction (ED). Until now, however, neural mechanisms underlying castration-induced ED remain unclear. Therefore, we examined whether androgen deprivation down-regulates nicotinic acetylcholine receptors (nAchRs), which mediate fast excitatory synaptic transmission in the PG. Toward this end, neurogenic ED was demonstrated by measuring the intracavernous pressure in castrated rats. Real-time PCR analysis revealed that the transcripts encoding nAchR α3/α5/ß4 subunits were significantly down-regulated in the PG neurons. In addition, down-regulation of the nAchR subunits was reversed by replacement of testosterone. Patch-clamp experiments showed that the nAchR currents were selectively attenuated in the parasympathetic PG neurons innervating the penile vasculature, activation of which elicits penile erection. Taken together, our data suggest that phenotype-specific down-regulation of nAchRs in the PG neurons may contribute to the neurogenic ED in castrated rats.


Asunto(s)
Regulación hacia Abajo , Ganglios Parasimpáticos/metabolismo , Ganglios Simpáticos/metabolismo , Pelvis/inervación , Erección Peniana/fisiología , Receptores Nicotínicos/genética , Animales , Disfunción Eréctil/etiología , Disfunción Eréctil/genética , Disfunción Eréctil/metabolismo , Masculino , Orquiectomía , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA