Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 138(14): 1237-1248, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34132762

RESUMEN

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm caused by aberrant activation of the mitogen-activated protein kinase (MAPK) pathway. Circulating myeloid cells from patients often carry disease-associated mutations and can be differentiated into langerinhigh LCH-like cells in vitro, but their detailed immune-phenotypic and molecular profiles are lacking and could shed key insights into disease biology. Here we recruited 217 pediatric LCH patients and took blood and tissue samples for BRAFV600E analysis. Immune-phenotyping of the circulating Lin-HLA-DR+ immune population in 49 of these patients revealed that decreased frequency of plasmacytoid dendritic cells was significantly linked to disease severity. By single-cell RNA sequencing of samples from 14 patients, we identified key changes in expression of RAS-MAPK-extracellular signal-regulated kinase (ERK) signaling-related genes and transcription factors in distinct members of the mononuclear phagocyte system in the presence of BRAFV600E. Moreover, treatment of patients with the BRAF inhibitor dabrafenib resulted in MAPK cascade inhibition, inflammation prevention, and regulation of cellular metabolism within mononuclear phagocytes. Finally, we also observed elevated expression of RAS-MAPK-ERK signaling-related genes in a CD207+CD1a+ cell subcluster in skin. Taken together, our data extend the molecular understanding of LCH biology at single-cell resolution, which might contribute to improvement of clinical diagnostics and therapeutics, and aid in the development of personalized medicine approaches.


Asunto(s)
Histiocitosis de Células de Langerhans/genética , Fagocitos , Transcriptoma , Adolescente , Niño , Preescolar , Femenino , Regulación de la Expresión Génica , Histiocitosis de Células de Langerhans/sangre , Humanos , Lactante , Masculino , Fagocitos/metabolismo , Análisis de la Célula Individual
2.
Nature ; 582(7813): 571-576, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499656

RESUMEN

Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs)1. However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45+ haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45+CD34+CD44+ yolk sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolk sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs.


Asunto(s)
Macrófagos/citología , Análisis de la Célula Individual , Linaje de la Célula , Embrión de Mamíferos/citología , Cabeza , Hematopoyesis , Humanos , Antígenos Comunes de Leucocito/metabolismo , Hígado/citología , Hígado/embriología , Pulmón/citología , Macrófagos/metabolismo , Microglía/citología , Células Progenitoras Mieloides/citología , RNA-Seq , Piel/citología , Análisis Espacio-Temporal , Transcriptoma , Saco Vitelino/citología
3.
Nat Rev Immunol ; 18(11): 726, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30166617

RESUMEN

In the original Figure 1, an arrow was mistakenly added between the fetal liver monocytes and the short-term and long-term HSCs. This arrow has now been removed.

4.
Nat Rev Immunol ; 18(11): 716-725, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30140052

RESUMEN

Macrophages are immune cells with important roles in tissue homeostasis, inflammation and pathologies. Hence, macrophage populations represent promising targets for modern medicine. Exploiting the potential of macrophage-targeted therapies will require a thorough understanding of the mechanisms controlling their development, specialization and maintenance throughout their lifespan. Macrophages have been studied in vitro for many years, but recent advances in the field of macrophage biology have called into question the validity of traditional approaches. New models, such as recent innovations in generating macrophages from induced pluripotent stem cells (iPSCs), must take into account the impact of heterogeneity in the origin and tissue-specific functions of macrophages. Here, we discuss these protocols and argue for a better understanding of the type of macrophages made in vitro; we also encourage recognition of the importance of tissue identity of macrophages, which cannot be recapitulated by cytokine-dependent protocols. We suggest that a two-step model - in which iPSC-derived macrophages are first generated based on their ontogeny and then conditioned by their tissue-specific environment - offers immense potential for generating biologically relevant macrophages for future studies.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Macrófagos , Animales , Diferenciación Celular/inmunología , Humanos , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/trasplante , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...