Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 50(85): 12966-9, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25219815

RESUMEN

The heparin complex of rat angiogenin revealed that a heparin strand is fitted into a positively charged groove formed by the dual binding site of rat angiogenin, suggesting that cell adhesion to angiogenin is facilitated by its interaction with substrates on the cell surface and can be inhibited by heparin.


Asunto(s)
Heparina/química , Heparina/metabolismo , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Adhesión Celular , Cristalografía por Rayos X , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Ratas
2.
PLoS One ; 8(5): e62981, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667555

RESUMEN

The ubiquitin-like modifier (UBL) domain of ubiquitin-like domain proteins (UDPs) interacts specifically with subunits of the 26 S proteasome. A novel UDP, ubiquitin-like domain-containing C-terminal domain phosphatase (UBLCP1), has been identified as an interacting partner of the 26 S proteasome. We determined the high-resolution solution structure of the UBL domain of human UBLCP1 by nuclear magnetic resonance spectroscopy. The UBL domain of hUBLCP1 has a unique ß-strand (ß3) and ß3-α2 loop, instead of the canonical ß4 observed in other UBL domains. The molecular topology and secondary structures are different from those of known UBL domains including that of fly UBLCP1. Data from backbone dynamics shows that the ß3-α2 loop is relatively rigid although it might have intrinsic dynamic profile. The positively charged residues of the ß3-α2 loop are involved in interacting with the C-terminal leucine-rich repeat-like domain of Rpn1.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Soluciones , Factor 2 Asociado a Receptor de TNF
3.
Biomol NMR Assign ; 7(1): 89-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22477091

RESUMEN

Angiogenin is an unusual member of the pancreatic ribonuclease superfamily that induces formation of new blood vessels and is a promising anti-cancer target. Here we report backbone and side chain (1)H, (13)C, and (15)N resonance assignments for rat angiogenin (residues 24-145), excluding the N-terminal signal peptide. These data allow nuclear magnetic resonance structure and inhibitor-binding studies with the aim of providing angiogenin antagonists as potential therapeutics.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Ribonucleasa Pancreática/química , Animales , Ratas , Soluciones
4.
J Am Chem Soc ; 134(51): 20573-6, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215019

RESUMEN

In nature, complex and well-defined structures are constructed by the self-assembly of biomolecules. It has been shown that ß-peptide foldamers can mimic natural peptides and self-assemble into three-dimensional molecular architectures thanks to their rigid and predictable helical conformation in solution. Using shorter foldamers, which can be prepared more easily than longer ones, to form such architectures is highly desirable, but shorter foldamers have been overlooked due to the seemingly inferior number of intramolecular hydrogen bonds to stabilize a folded state in solution. Here we report that a ß-peptide tetramer, although it lacks full helical propensity in solution, does self-assemble to form well-defined microtubes with rectangular cross-section by evaporation-induced self-assembly.


Asunto(s)
Cicloleucina/química , Oligopéptidos/química , Pliegue de Proteína , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Secundaria de Proteína
5.
Proc Natl Acad Sci U S A ; 108(17): 6921-6, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21471454

RESUMEN

The DNA-dependent activator of IFN-regulatory factors (DAI), also known as DLM-1/ZBP1, initiates an innate immune response by binding to foreign DNAs in the cytosol. For full activation of the immune response, three DNA binding domains at the N terminus are required: two Z-DNA binding domains (ZBDs), Zα and Zß, and an adjacent putative B-DNA binding domain. The crystal structure of the Zß domain of human DAI (hZß(DAI)) in complex with Z-DNA revealed structural features distinct from other known Z-DNA binding proteins, and it was classified as a group II ZBD. To gain structural insights into the DNA binding mechanism of hZß(DAI), the solution structure of the free hZß(DAI) was solved, and its bindings to B- and Z-DNAs were analyzed by NMR spectroscopy. Compared to the Z-DNA-bound structure, the conformation of free hZß(DAI) has notable alterations in the α3 recognition helix, the "wing," and Y145, which are critical in Z-DNA recognition. Unlike some other Zα domains, hZß(DAI) appears to have conformational flexibility, and structural adaptation is required for Z-DNA binding. Chemical-shift perturbation experiments revealed that hZß(DAI) also binds weakly to B-DNA via a different binding mode. The C-terminal domain of DAI is reported to undergo a conformational change on B-DNA binding; thus, it is possible that these changes are correlated. During the innate immune response, hZß(DAI) is likely to play an active role in binding to DNAs in both B and Z conformations in the recognition of foreign DNAs.


Asunto(s)
ADN de Forma Z/química , Proteínas de Unión al ADN/química , Modelos Moleculares , ADN de Forma Z/inmunología , ADN de Forma Z/metabolismo , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata/fisiología , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN
6.
Protein Expr Purif ; 73(1): 74-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20347989

RESUMEN

Glutathione S-transferases (GSTs) are multifunctional enzymes that are used as fusion tags on recombinant proteins in mammalian and Escherichia coli expression systems. We recently found that the Schistosoma japonicum GST (SjGST) displays weak Ni(2+) ion binding affinity. Glu26 and His79 were assumed to be its Ni(2+) binding sites based on the structure of the 26-kDa Clonorchis sinensis GST. To enhance SjGST Ni(2+) binding affinity, Glu26 was mutated to His. SjGST-E26H was expressed and purified at a high concentration of imidazole to a higher purity than wild type SjGST. In addition, human biotin protein ligase fused to SjGST-E26H was purified with a immobilized Ni affinity column.


Asunto(s)
Cromatografía de Afinidad/métodos , Glutatión Transferasa/metabolismo , Histidina/metabolismo , Níquel/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Schistosoma japonicum/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Biotina/genética , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Glutatión Transferasa/química , Glutatión Transferasa/genética , Histidina/química , Histidina/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Schistosoma japonicum/genética , Alineación de Secuencia , Relación Estructura-Actividad
7.
FEBS Lett ; 584(4): 675-80, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20085763

RESUMEN

Human holocarboxylase synthetase shows a high degree of sequence homology in the catalytic domain with bacterial biotin ligases such as Escherichia coli BirA, but differs in the length and sequence of the N-terminus. Despite several studies having been undertaken on the N-terminal region of hHCS, the role of this region remains unclear. We determined the structure of the N-terminal domain of hHCS by limited proteolysis and showed that this domain has a crucial effect on the enzymatic activity. The domain interacts not only with biotin acceptor protein, but also with the catalytic domain of hHCS, as shown by nuclear magnetic resonance (NMR) experiments. We propose that the N-terminal domain of hHCS recognizes the charged region of biotin acceptor protein, distinctly from the recognition by the catalytic domain.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Estructura Terciaria de Proteína , Sitios de Unión/genética , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Dominio Catalítico/genética , Quimotripsina/metabolismo , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Endopeptidasa K/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Mutación , Unión Proteica , Especificidad por Sustrato , Subtilisina/metabolismo
8.
Biochem Biophys Res Commun ; 391(1): 455-60, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19914215

RESUMEN

Holocarboxylase synthetase (HCS) is an essential enzyme that catalyzes the incorporation of biotin into apo carboxylase and the biotinylation of the four biotin-dependent carboxylases in the human cell. Deficiency of HCS results in decreased activity of these carboxylases and affects various metabolic processes. Despite the importance of this enzyme, the recognition mechanism of the biotinoyl domain by human HCS (hHCS) has remained unclear. We have developed a method to express hHCS in the baculovirus system and used it to purify catalytically active, full-length hHCS. NMR experiments on the biotinoyl domains from acetyl-CoA carboxylase indicate that when hHCS is added, it recognizes the MKM motif in human and in Escherichia coli with a preference to the human biotinoyl domain. In addition, hHCS can biotinylate the biotinoyl domains from human and E. coli acetyl-CoA carboxylase at similar rates compared to the E. coli biotin protein ligase, BirA, which reacts very slowly with the human biotinoyl domain. We propose that the hHCS has greater substrate acceptability, while the BirA has higher substrate specificity. These results provide insights into substrate recognition by hHCS, which can be distinguished from BirA in this respect.


Asunto(s)
Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Acetil-CoA Carboxilasa , Secuencia de Aminoácidos , Avidina/metabolismo , Baculoviridae , Biotinilación , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Proteínas de Escherichia coli/metabolismo , Humanos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
9.
Proteins ; 72(2): 613-24, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18247344

RESUMEN

Acetyl-CoA carboxylase (ACC) catalyzes the first step in fatty acid biosynthesis: the synthesis of malonyl-CoA from acetyl-CoA. As essential regulators of fatty acid biosynthesis and metabolism, ACCs are regarded as therapeutic targets for the treatment of metabolic diseases such as obesity. In ACC, the biotinoyl domain performs a critical function by transferring an activated carboxyl group from the biotin carboxylase domain to the carboxyl transferase domain, followed by carboxyl transfer to malonyl-CoA. Despite the intensive research on this enzyme, only the bacterial and yeast ACC structures are currently available. To explore the mechanism of ACC holoenzyme function, we determined the structure of the biotinoyl domain of human ACC2 and analyzed its characteristics and interaction with the biotin ligase, BirA using NMR spectroscopy. The 3D structure of the hACC2 biotinoyl domain has a similar folding topology to the earlier determined domains from E. coli and P. shermanii. However, the local structures near the biotinylation sites have notable differences that include the geometry of the consensus "Met-Lys-Met" (MKM) motif and the absence of "thumb" structure in the hACC2 biotinoyl domain. Observations of the NMR signals upon the biotinylation indicate that the biotin group of hACC2 does not affect the structure of the biotinoyl domain, while the biotin group for E. coli ACC interacts directly with the thumb residues that are not present in the hACC2 structure. These results imply that, in the E. coli ACC reaction, the biotin moiety carrying the carboxyl group from BC to CT can pause at the thumb of the BCCP domain. The human biotinoyl domain, however, lacks the thumb structure and does not have additional noncovalent interactions with the biotin moiety; thus, the flexible motion of the biotinylated lysine residue must underlie the "swinging arm" motion. The chemical shift perturbation and the cross saturation experiments of the human ACC2 holo-biotinoyl upon the addition of the biotin ligase (BirA) showed the interaction surface near the MKM motif, the two glutamic acids (Glu 926, Glu 953), and the positively charged residues (several lysine and arginine residues). This study provides insight into the mechanism of ACC holoenzyme function and supports the swinging arm model in human ACCs.


Asunto(s)
Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/aislamiento & purificación , Acetil-CoA Carboxilasa/metabolismo , Secuencia de Aminoácidos , Biotina/metabolismo , Catálisis , Cromatografía en Gel , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA