Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 153(1): 132-145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783432

RESUMEN

BACKGROUND: Basophils are rare but important effector cells in many allergic disorders. Contrary to their early progenitors, the terminal developmental processes of basophils in which they gain their unique functional properties are unknown. OBJECTIVE: We sought to identify a novel late-stage basophil precursor and a transcription factor regulating the terminal maturation of basophils. METHODS: Using flow cytometry, transcriptome analysis, and functional assays, we investigated the identification and functionality of the basophil precursors as well as basophil development. We generated mice with basophil-specific deletion of nuclear factor IL-3 (NFIL3)/E4BP4 and analyzed the functional impairment of NFIL3/E4BP4-deficient basophils in vitro and in vivo using an oxazolone-induced murine model of allergic dermatitis. RESULTS: We report a new mitotic transitional basophil precursor population (referred to as transitional basophils) that expresses the FcεRIα chain at higher levels than mature basophils. Transitional basophils are less responsive to IgE-linked degranulation but produce more cytokines in response to IL-3, IL-33, or IgE cross-linking than mature basophils. In particular, we found that the expression of NFIL3/E4BP4 gradually rises as cells mature from the basophil progenitor stage. Basophil-specific deletion of NFIL3/E4BP4 reduces the expression of genes necessary for basophil function and impairs IgE receptor signaling, cytokine secretion, and degranulation in the context of murine atopic dermatitis. CONCLUSIONS: We discovered transitional basophils, a novel late-stage mitotic basophil precursor cell population that exists between basophil progenitors and postmitotic mature basophils. We demonstrated that NFIL3/E4BP4 augments the IgE-mediated functions of basophils, pointing to a potential therapeutic regulator for allergic diseases.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Basófilos , Animales , Ratones , Basófilos/citología , Basófilos/metabolismo , Dermatitis Atópica/metabolismo , Hipersensibilidad/metabolismo , Inmunoglobulina E/metabolismo , Interleucina-3/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
2.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995687

RESUMEN

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , ARN Nuclear , Epigénesis Genética , Heterocromatina , Expresión Génica
3.
BMC Cancer ; 23(1): 831, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37670250

RESUMEN

BACKGROUND: Heterogeneous tumor cells are thought to be a significant factor in the failure of endocrine therapy in estrogen receptor-positive (ER+) cancers. Culturing patient-derived breast cancer cells (PDBCCs) provides an invaluable tool in pre-clinical and translational research for the heterogeneity of cancer cells. This study aimed to investigate the effects of different media components and culture methods on the BCSC-associated immunophenotypes and gene expression in ER + PDBCCs. METHODS: Ten patients with ER + breast cancer were employed in this study, six of whom had neoadjuvant chemotherapy and four of whom did not. PDBCCs were isolated by enzymatic methods using collagen I and hyaluronidase. PDBCCs were grown as monolayers in mediums with different compositions and as multicellular spheroid in a suspended condition. Collagen I-coated plate and ultralow attachment plate coated with polymer-X were used for monolayer and spheroid culture. Flow cytometry, immunofluorescent staining, RT-PCR, and RNA-sequencing were employed to examine the immunophenotype and genetic profile of PDBCCs. RESULTS: More than 95% of PDBCCs sustain EpCAM high/+/fibroblast marker- phenotypes in monolayer conditions by subculturing 3-4 times. A83-01 removal induced senescent cells with high ß-galactosidase activity. PDBCCs grown as monolayers were characterized by the majority of cells having an EpCAM+/CD49f + phenotype. Compared to full media in monolayer culture, EGF removal increased EpCAM+/CD49f - phenotype (13.8-fold, p = 0.028), whereas R-spondin removal reduced it (0.8-fold, p = 0.02). A83-01 removal increased EpCAM+/CD24 + phenotype (1.82-fold, p = 0.023) and decreased EpCAM low/-/CD44+/CD24- phenotype (0.45-fold, p = 0.026). Compared to monolayer, spheroid resulted in a significant increase in the population with EpCAM-/CD49+ (14.6-fold, p = 0.006) and EpCAM low/-/CD44+/CD24- phenotypes (4.16-fold, p = 0.022) and ALDH high activity (9.66-fold, p = 0.037). ALDH1A and EMT-related genes were upregulated. In RNA-sequencing analysis between spheroids and monolayers, a total of 561 differentially expressed genes (2-fold change, p < 0.05) were enriched in 27 KEGG pathways including signaling pathways regulating pluripotency of stem cells. In a recurrence-free survival analysis based on the Kaplan-Meier Plotter database of the up-and down-regulated genes identified in spheroids, 15 up-, and 14 down-regulated genes were associated with poor prognosis of breast cancer patients. CONCLUSION: The media composition and spheroid culture method change in the BCSCs and EMT markers of PDBCCs, implying the importance of defining the media composition and culture method for studying PDBCCs in vitro.


Asunto(s)
Colágeno Tipo I , Neoplasias , Molécula de Adhesión Celular Epitelial , Integrina alfa6 , ARN
4.
Genomics Inform ; 21(2): e19, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37704209

RESUMEN

Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global threat to human lives. To advance the development of innovative diagnostic and treatment approaches, it is essential to examine the hidden features of HCC, particularly its 3D genome architecture, which is not well understood. In this study, we investigated the 3D genome organization of four HCC cell lines-Hep3B, Huh1, Huh7, and SNU449-using in situ Hi-C and assay for transposase-accessible chromatin sequencing. Our findings revealed that HCC cell lines had more long-range interactions, both intra-and interchromosomal, compared to human mammary epithelial cells (HMECs). Unexpectedly, HCC cell lines displayed cell line-specific compartmental modifications at the megabase (Mb) scale, which could potentially be leveraged in determining HCC subtypes. At the sub-Mb scale, we observed decreases in intra-TAD (topologically associated domain) interactions and chromatin loops in HCC cell lines compared to HMECs. Lastly, we discovered a correlation between gene expression and the 3D chromatin architecture of SLC8A1, which encodes a sodium-calcium antiporter whose modulation is known to induce apoptosis by comparison between HCC cell lines and HMECs. Our findings suggest that HCC cell lines have a distinct 3D genome organization that is different from those of normal and other cancer cells based on the analysis of compartments, TADs, and chromatin loops. Overall, we take this as evidence that genome organization plays a crucial role in cancer phenotype determination. Further exploration of epigenetics in HCC will help us to better understand specific gene regulation mechanisms and uncover novel targets for cancer treatment.

5.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194978, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37633648

RESUMEN

The 26S proteasome consists of a 20S core particle and a 19S regulatory particle and critically regulates gene expression and silencing through both proteolytic and non-proteolytic functions. The 20S core particle mediates proteolysis, while the 19S regulatory particle performs non-proteolytic functions. The proteasome plays a role in regulating gene expression in euchromatin by modifying histones, activating transcription, initiating and terminating transcription, mRNA export, and maintaining transcriptome integrity. In gene silencing, the proteasome modulates the heterochromatin formation, spreading, and subtelomere silencing by degrading specific proteins and interacting with anti-silencing factors such as Epe1, Mst2, and Leo1. This review discusses the proteolytic and non-proteolytic functions of the proteasome in regulating gene expression and gene silencing-related heterochromatin formation. This article is part of a special issue on the regulation of gene expression and genome integrity by the ubiquitin-proteasome system.


Asunto(s)
Heterocromatina , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Heterocromatina/metabolismo , Citoplasma/metabolismo , Expresión Génica
6.
Biomedicines ; 10(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36359204

RESUMEN

Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.

8.
Elife ; 112022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551737

RESUMEN

Inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate (IP) metabolism, is a pleiotropic signaling factor involved in major biological events, including transcriptional control. In the yeast, IPMK and its IP products promote the activity of the chromatin remodeling complex SWI/SNF, which plays a critical role in gene expression by regulating chromatin accessibility. However, the direct link between IPMK and chromatin remodelers remains unclear, raising the question of how IPMK contributes to transcriptional regulation in mammals. By employing unbiased screening approaches and in vivo/in vitro immunoprecipitation, here we demonstrate that mammalian IPMK physically interacts with the SWI/SNF complex by directly binding to SMARCB1, BRG1, and SMARCC1. Furthermore, we identified the specific domains required for IPMK-SMARCB1 binding. Notably, using CUT&RUN and ATAC-seq assays, we discovered that IPMK co-localizes with BRG1 and regulates BRG1 localization as well as BRG1-mediated chromatin accessibility in a genome-wide manner in mouse embryonic stem cells. Together, these findings show that IPMK regulates the promoter targeting of the SWI/SNF complex, thereby contributing to SWI/SNF-meditated chromatin accessibility, transcription, and differentiation in mouse embryonic stem cells.


Asunto(s)
Proteínas Cromosómicas no Histona , ADN Helicasas , Animales , Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Mamíferos/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)
9.
Exp Mol Med ; 54(5): 585-600, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513575

RESUMEN

Triple-negative breast cancer (TNBC) is a malignant cancer subtype with a high risk of recurrence and an aggressive phenotype compared to other breast cancer subtypes. Although many breast cancer studies conducted to date have investigated genetic variations and differential target gene expression, how 3D chromatin architectures are reorganized in TNBC has been poorly elucidated. Here, using in situ Hi-C technology, we characterized the 3D chromatin organization in cells representing five distinct subtypes of breast cancer (including TNBC) compared to that in normal cells. We found that the global and local 3D architectures were severely disrupted in breast cancer. TNBC cell lines (especially BT549 cells) showed the most dramatic changes relative to normal cells. Importantly, we detected CTCF-dependent TNBC-susceptible losses/gains of 3D chromatin organization and found that these changes were strongly associated with perturbed chromatin accessibility and transcriptional dysregulation. In TNBC tissue, 3D chromatin disorganization was also observed relative to the 3D chromatin organization in normal tissues. We observed that the perturbed local 3D architectures found in TNBC cells were partially conserved in TNBC tissues. Finally, we discovered distinct tissue-specific chromatin loops by comparing normal and TNBC tissues. In this study, we elucidated the characteristics of the 3D chromatin organization in breast cancer relative to normal cells/tissues at multiple scales and identified associations between disrupted structures and various epigenetic features and transcriptomes. Collectively, our findings reveal important 3D chromatin structural features for future diagnostic and therapeutic studies of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Transcriptoma , Neoplasias de la Mama Triple Negativas/metabolismo
10.
Mol Cells ; 44(11): 805-829, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34764232

RESUMEN

CCCTC-binding factor (CTCF) critically contributes to 3D chromatin organization by determining topologically associated domain (TAD) borders. Although CTCF primarily binds at TAD borders, there also exist putative CTCF-binding sites within TADs, which are spread throughout the genome by retrotransposition. However, the detailed mechanism responsible for masking the putative CTCF-binding sites remains largely elusive. Here, we show that the ATP-dependent chromatin remodeler, chromodomain helicase DNA-binding 4 (CHD4), regulates chromatin accessibility to conceal aberrant CTCF-binding sites embedded in H3K9me3-enriched heterochromatic B2 short interspersed nuclear elements (SINEs) in mouse embryonic stem cells (mESCs). Upon CHD4 depletion, these aberrant CTCF-binding sites become accessible and aberrant CTCF recruitment occurs within TADs, resulting in disorganization of local TADs. RNA-binding intrinsically disordered domains (IDRs) of CHD4 are required to prevent this aberrant CTCF binding, and CHD4 is critical for the repression of B2 SINE transcripts. These results collectively reveal that a CHD4-mediated mechanism ensures appropriate CTCF binding and associated TAD organization in mESCs.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , ADN Helicasas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Sitios de Unión , Técnicas de Cultivo de Célula , Ratones
11.
Nat Commun ; 12(1): 6380, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737268

RESUMEN

We herein employ in situ Hi-C with an auxin-inducible degron (AID) system to examine the effect of chromatin remodeling on 3D genome organization in yeast. Eight selected ATP-dependent chromatin remodelers representing various subfamilies contribute to 3D genome organization differently. Among the studied remodelers, the temporary depletions of Chd1p, Swr1p, and Sth1p (a catalytic subunit of the Remodeling the Structure of Chromatin [RSC] complex) cause the most significant defects in intra-chromosomal contacts, and the regulatory roles of these three remodelers in 3D genome organization differ depending on the chromosomal context and cell cycle stage. Furthermore, even though Chd1p and Isw1p are known to share functional similarities/redundancies, their depletions lead to distinct effects on 3D structures. The RSC and cohesin complexes also differentially modulate 3D genome organization within chromosome arm regions, whereas RSC appears to support the function of cohesin in centromeric clustering at G2 phase. Our work suggests that the ATP-dependent chromatin remodelers control the 3D genome organization of yeast through their chromatin-remodeling activities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/metabolismo , Saccharomycetales/metabolismo , Ciclo Celular/fisiología , Saccharomycetales/genética , Cohesinas
12.
Genome Biol ; 22(1): 294, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663418

RESUMEN

BACKGROUND: Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step for the precise regulation of gene expression. Despite the apparent close relationship between promoter-proximal pausing and nucleosome, the role of chromatin remodeler governing this step has mainly remained elusive. RESULTS: Here, we report highly confined RNAPII enrichments downstream of the transcriptional start site in Saccharomyces cerevisiae using PRO-seq experiments. This non-uniform distribution of RNAPII exhibits both similar and different characteristics with promoter-proximal pausing in Schizosaccharomyces pombe and metazoans. Interestingly, we find that Ino80p knockdown causes a significant upstream transition of promoter-proximal RNAPII for a subset of genes, relocating RNAPII from the main pausing site to the alternative pausing site. The proper positioning of RNAPII is largely dependent on nucleosome context. We reveal that the alternative pausing site is closely associated with the + 1 nucleosome, and nucleosome architecture around the main pausing site of these genes is highly phased. In addition, Ino80p knockdown results in an increase in fuzziness and a decrease in stability of the + 1 nucleosome. Furthermore, the loss of INO80 also leads to the shift of promoter-proximal RNAPII toward the alternative pausing site in mouse embryonic stem cells. CONCLUSIONS: Based on our collective results, we hypothesize that the highly conserved chromatin remodeler Ino80p is essential in establishing intact RNAPII pausing during early transcription elongation in various organisms, from budding yeast to mouse.


Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Animales , Ratones , Células Madre Embrionarias de Ratones , Nucleosomas , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/genética
13.
EMBO Mol Med ; 13(2): e12632, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33428810

RESUMEN

Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced ß-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.


Asunto(s)
Glicina , Receptores de N-Metil-D-Aspartato , Animales , Encéfalo/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Homeostasis , Proteínas de Transporte de Membrana , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Exp Mol Med ; 52(7): 991-1003, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32616828

RESUMEN

SAGA (Spt-Ada-Gcn5 acetyltransferase) is a highly conserved transcriptional coactivator that consists of four functionally independent modules. Its two distinct enzymatic activities, histone acetylation and deubiquitylation, establish specific epigenetic patterns on chromatin and thereby regulate gene expression. Whereas earlier studies emphasized the importance of SAGA in regulating global transcription, more recent reports have indicated that SAGA is involved in other aspects of gene expression and thus plays a more comprehensive role in regulating the overall process. Here, we discuss recent structural and functional studies of each SAGA module and compare the subunit compositions of SAGA with related complexes in yeast and metazoans. We discuss the regulatory role of the SAGA deubiquitylating module (DUBm) in mRNA surveillance and export, and in transcription initiation and elongation. The findings suggest that SAGA plays numerous roles in multiple stages of transcription. Further, we describe how SAGA is related to human disease. Overall, in this report, we illustrate the newly revealed understanding of SAGA in transcription regulation and disease implications for fine-tuning gene expression.


Asunto(s)
Acetiltransferasas/metabolismo , Eucariontes/genética , Transcripción Genética , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
15.
Biochem Biophys Res Commun ; 516(3): 806-811, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31255284

RESUMEN

In Schizosaccharomyces pombe, there are two aconitases, Aco1 and Aco2, involved in the Krebs cycle in mitochondria. Interestingly, Aco2 is localized to nucleus as well. Here, we investigated the nuclear role of Aco2 by deleting its nuclear localization signal. The aco2ΔNLS mutation suppressed the gene-silencing defects of RNAi mutants at the centromere, where heterochromatin formation depends on RNAi pathway. In Δago1, the aco2ΔNLS mutation restored heterochromatin through elevating Chp1 binding. Aco2 physically interacted with Chp1 via the N-terminal chromodomain that binds to methylated histone H3K9. In the sub-telomeric region, where heterochromatin forms independent of RNAi pathway, the single aco2ΔNLS mutation caused extra gene silencing via elevating Chp1 binding, without increasing histone methylation. The anti-silencing effect did not require the catalytic function of aconitase. Taken together, Aco2 functions as an epigenetic regulator of gene expression, through associating with chromodomain of Chp1 to maintain heterochromatin.


Asunto(s)
Aconitato Hidratasa/genética , Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Heterocromatina/química , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Aconitato Hidratasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrómero , Ensamble y Desensamble de Cromatina , ADN de Hongos/genética , ADN de Hongos/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Señales de Localización Nuclear , Unión Proteica , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Eliminación de Secuencia
16.
Nat Commun ; 10(1): 2458, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31165730

RESUMEN

During stress, prompt export of stress-inducible transcripts is critical for cell survival. Here, we characterize a function of the SAGA (Spt-Ada-Gcn5 acetyltransferase) deubiquitylating module (DUBm) in monitoring messenger ribonucleoprotein (mRNP) biogenesis to regulate non-canonical mRNA export of stress-inducible transcripts. Our genetic and biochemical analyses suggest that there is a functional relationship between Sgf73p of DUBm and the essential mRNA export factor, Yra1p. Under physiological conditions, Sgf73p is critical for the proper chromatin localization and RNA binding of Yra1p, while also quality controlling the biogenesis of mRNPs in conjunction with the nuclear exosome exonuclease, Rrp6p. Under environmental stress, when immediate transport of stress-inducible transcripts is imperative, Sgf73p facilitates the bypass of canonical surveillance and promotes the timely export of necessary transcripts. Overall, our results show that the Sgf73p-mediated plasticity of gene expression is important for the ability of cells to tolerate stress and regulate proteostasis to survive under environmental uncertainty.


Asunto(s)
Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Cromatina/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Proteostasis , Transporte de ARN , Saccharomyces cerevisiae , Transactivadores/metabolismo
17.
Sci Rep ; 9(1): 4502, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872732

RESUMEN

Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, but VEGF-induced angiogenesis is often accompanied by a vascular permeability response. Ginsenosides are triterpenoid saponins from the well-known medicinal plant, ginseng, and have been considered a candidate for modulating angiogenesis. Here, we systemically investigated the effects of 10 different ginsenosides on human umbilical vein endothelial cells and newly identified that two PPT-type ginsenosides, F1 and Rh1 induce the migration and proliferation of endothelial cells. Interestingly, RNA transcriptome analysis showed that gene regulation induced by VEGF in endothelial cells is distinct from that of ginsenoside F1 and Rh1. In addition, F1 and Rh1 significantly inhibited vascular leakage both in vitro and in vivo, which are induced by vascular endothelial growth factor. Furthermore, comparative transcriptome analysis revealed that these effects of F1 and Rh1 on vascular leakage restoration are mainly caused by changes in VEGF-mediated TNFα signaling via NFκB, particularly by the suppression of expression and transcriptional activity of NR4A1 by F1 and Rh1, even in the presence of VEGF. These findings demonstrate that ginsenosides F1 and Rh1 can be a promising herbal remedy for vessel normalization in ischemic disease and cancer and that NR4A1 is the key target.


Asunto(s)
Ginsenósidos/farmacología , Microvasos/citología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Retina/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Microvasos/química , Microvasos/efectos de los fármacos , Retina/citología , Secuenciación del Exoma
18.
Mol Cells ; 41(11): 953-963, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30396239

RESUMEN

The stepwise development of T cells from a multipotent precursor is guided by diverse mechanisms, including interactions among lineage-specific transcription factors (TFs) and epigenetic changes, such as DNA methylation and hydroxymethylation, which play crucial roles in mammalian development and lineage commitment. To elucidate the transcriptional networks and epigenetic mechanisms underlying T-cell lineage commitment, we investigated genome-wide changes in gene expression, DNA methylation and hydroxymethylation among populations representing five successive stages of T-cell development (DN3, DN4, DP, CD4+, and CD8+) by performing RNA-seq, MBD-seq and hMeDIP-seq, respectively. The most significant changes in the transcriptomes and epigenomes occurred during the DN4 to DP transition. During the DP stage, many genes involved in chromatin modification were up-regulated and exhibited dramatic changes in DNA hydroxymethylation. We also observed 436 alternative splicing events, and approximately 57% (252) of these events occurred during the DP stage. Many stage-specific, differentially methylated regions were observed near the stage-specific, differentially expressed genes. The dynamic changes in DNA methylation and hydroxymethylation were associated with the recruitment of stage-specific TFs. We elucidated interactive networks comprising TFs, chromatin modifiers, and DNA methylation and hope that this study provides a framework for the understanding of the molecular networks underlying T-cell lineage commitment.


Asunto(s)
ADN/genética , Epigenómica , Redes Reguladoras de Genes , Linfocitos T/fisiología , Transcriptoma , Empalme Alternativo , Animales , Diferenciación Celular , Linaje de la Célula , Metilación de ADN , Regulación de la Expresión Génica , Hematopoyesis , Humanos , Factores de Transcripción/metabolismo
19.
Cancer Res ; 78(24): 6890-6902, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30352813

RESUMEN

: Although cancer stem cells (CSC) are thought to be responsible for tumor recurrence and resistance to chemotherapy, CSC-related research and drug development have been hampered by the limited supply of diverse, patient-derived CSC. Here, we present a functional polymer thin film (PTF) platform that promotes conversion of cancer cells to highly tumorigenic three-dimensional (3D) spheroids without the use of biochemical or genetic manipulations. Culturing various human cancer cells on the specific PTF, poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) (pV4D4), gave rise to numerous multicellular tumor spheroids within 24 hours with high efficiency and reproducibility. Cancer cells in the resulting spheroids showed a significant increase in the expression of CSC-associated genes and acquired increased drug resistance compared with two-dimensional monolayer-cultured controls. These spheroids also exhibited enhanced xenograft tumor-forming ability and metastatic capacity in nude mice. By enabling the generation of tumorigenic spheroids from diverse cancer cells, the surface platform described here harbors the potential to contribute to CSC-related basic research and drug development. SIGNIFICANCE: A new cell culture technology enables highly tumorigenic 3D spheroids to be easily generated from various cancer cell sources in the common laboratory.


Asunto(s)
Células Madre Neoplásicas/citología , Polímeros/química , Esferoides Celulares/citología , Animales , Carcinogénesis/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Genoma , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/patología , Reproducibilidad de los Resultados
20.
Nat Med ; 24(11): 1662-1668, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224756

RESUMEN

Pediatric brain tumors are highly associated with epileptic seizures1. However, their epileptogenic mechanisms remain unclear. Here, we show that the oncogenic BRAF somatic mutation p.Val600Glu (V600E) in developing neurons underlies intrinsic epileptogenicity in ganglioglioma, one of the leading causes of intractable epilepsy2. To do so, we developed a mouse model harboring the BRAFV600E somatic mutation during early brain development to reflect the most frequent mutation, as well as the origin and timing thereof. Therein, the BRAFV600E mutation arising in progenitor cells during brain development led to the acquisition of intrinsic epileptogenic properties in neuronal lineage cells, whereas tumorigenic properties were attributed to high proliferation of glial lineage cells. RNA sequencing analysis of patient brain tissues with the mutation revealed that BRAFV600E-induced epileptogenesis is mediated by RE1-silencing transcription factor (REST), which is a regulator of ion channels and neurotransmitter receptors associated with epilepsy. Moreover, we found that seizures in mice were significantly alleviated by an FDA-approved BRAFV600E inhibitor, vemurafenib, as well as various genetic inhibitions of Rest. Accordingly, this study provides direct evidence of a BRAF somatic mutation contributing to the intrinsic epileptogenicity in pediatric brain tumors and suggests that BRAF and REST could be treatment targets for intractable epilepsy.


Asunto(s)
Neoplasias Encefálicas/genética , Ganglioglioma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Represoras/genética , Convulsiones/genética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Niño , Modelos Animales de Enfermedad , Ganglioglioma/complicaciones , Ganglioglioma/diagnóstico por imagen , Ganglioglioma/fisiopatología , Humanos , Ratones , Mutación , Pediatría , Convulsiones/complicaciones , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...