Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659926

RESUMEN

Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.

2.
Ageing Res Rev ; 96: 102275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494091

RESUMEN

Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated ß-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.


Asunto(s)
Cartílago Articular , Osteoartritis , Anciano , Humanos , Senoterapéuticos , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Envejecimiento/fisiología , Senescencia Celular/fisiología , Cartílago Articular/metabolismo
3.
Nat Commun ; 14(1): 7150, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932263

RESUMEN

Hydroxycarboxylic acid receptors (HCAR1, HCAR2, and HCAR3) transduce Gi/o signaling upon biding to molecules such as lactic acid, butyric acid and 3-hydroxyoctanoic acid, which are associated with lipolytic and atherogenic activity, and neuroinflammation. Although many reports have elucidated the function of HCAR2 and its potential as a therapeutic target for treating not only dyslipidemia but also neuroimmune disorders such as multiple sclerosis and Parkinson's disease, the structural basis of ligand recognition and ligand-induced Gi-coupling remains unclear. Here we report three cryo-EM structures of the human HCAR2-Gi signaling complex, each bound with different ligands: niacin, acipimox or GSK256073. All three agonists are held in a deep pocket lined by residues that are not conserved in HCAR1 and HCAR3. A distinct hairpin loop at the HCAR2 N-terminus and extra-cellular loop 2 (ECL2) completely enclose the ligand. These structures also reveal the agonist-induced conformational changes propagated to the G-protein-coupling interface during activation. Collectively, the structures presented here are expected to help in the design of ligands specific for HCAR2, leading to new drugs for the treatment of various diseases such as dyslipidemia and inflammation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Ácidos Carboxílicos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
4.
Cell Commun Signal ; 21(1): 315, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924094

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common cancer diagnosed in women worldwide. BC stem cells (BCSCs) have been known to be involved in the carcinogenesis of the breast and contribute to therapeutic resistance. The programmed death-ligand 1 (PD-L1) expression of BC correlated with a poor prognosis. Immunotherapies that target PD-L1 have great potential and have been successful when applied to cancer treatment. However, whether PD-L1 regulates BCSC formation is unknown. METHODS: BCSCs were enriched by serum-free suspension culture. The properties of BCSCs were examined by mammosphere formation assay, CD44+/Cd24-, aldehyde dehydrogenase (ALDH) assay, CSC marker analysis, and mammosphere growth assay. To elucidate the functions of bromodomain-containing protein 4 (BRD4), nuclear PD-L1, and RelB proteins in the stemness of BCSCs, mammosphere formation was examined using BRD4 inhibitor and degrader, PD-L1 degrader, and RelB inhibitor. The antitumor function of 3',4',7,8-tetrahydroxyflavone (THF), a specific BRD4 inhibitor, was studied through in vivo tumor model and mouse studies, and the protein levels of c-Myc, PD-L1, and RelB were examined in tumor model under THF treatment. RESULTS: BRD4 was upregulated in breast CSCs and regulates the stemness of BCs. The downregulation of BRD4 using BRD4 PROTAC, ARV-825, and BRD4 inhibitor, (+)-JQ1, inhibits mammosphere formation and reduces the levels of breast CSC markers (CD44+/CD24- and ALDH1), stem cell marker genes, and mammosphere growth. BRD4 inhibitor (JQ1) and degrader (ARV825) downregulate membrane and nuclear fractions of PD-L1 through the inhibition of PD-L1 transcript levels. The knockdown of PD-L1 inhibits mammosphere formation. Verteporfin, a PD-L1 degrader, inhibits the transcripts and protein levels of PD-L1 and downregulates the transcript and protein levels of RelB. Calcitriol, a RelB inhibitor, and the knockdown of RelB using si-RelB regulate mammosphere formation through interleukin-6 (IL-6) expression. THF is a natural product and a potent selective BRD4 inhibitor, inhibits mammosphere formation, and reduces the levels of CD44+/CD24- and mammosphere growth by downregulating c-Myc, PD-L1, and RelB. 3',4',7,8-THF shows tumoricidal activity and increased levels of CD3+CD4+ and CD3+CD8+ T-cells in the tumor and tumor-draining lymph nodes (TDLNs) in the murine tumor model using 4T1 and MC38 cells. CONCLUSIONS: The results show the first evidence of the essential role of the BRD4/nuclear PD-L1/RelB axis in breast CSC formation. The nuclear PD-L1 regulates RelB, and the RelB/p65 complex induces IL6 and breast CSC formation. Targeting nuclear PD-L1 represents a potential and novel tool for immunotherapies of intractable BC. Video Abstract.


Asunto(s)
Neoplasias de la Mama , Factores de Transcripción , Humanos , Femenino , Animales , Ratones , Factores de Transcripción/metabolismo , Neoplasias de la Mama/patología , Antígeno B7-H1/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular , Proteínas de Ciclo Celular/metabolismo
5.
In Vivo ; 37(3): 1085-1092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103085

RESUMEN

BACKGROUND/AIM: Breast cancer stem cells (BCSCs) are involved in the development of breast cancer and contribute to therapeutic resistance. This study aimed to investigate the anticancer stem cell (CSC) mechanism of 13-Oxo-9Z,11E-octadecadienoic acid (13-Oxo-ODE) as a potent CSC inhibitor in breast cancer. MATERIALS AND METHODS: The effects of 13-Oxo-ODE on BCSCs were evaluated using a mammosphere formation assay, CD44high/CD24low analysis, aldehyde dehydrogenase (ALDH) assay, apoptosis assay, quantitative real-time PCR, and western blotting. RESULTS: We found that 13-Oxo-ODE suppressed cell proliferation, CSC formation, and mammosphere proliferation and increased apoptosis of BCSCs. Additionally, 13-Oxo-ODE reduced the subpopulation of CD44high/CD24low cells and ALDH expression. Furthermore, 13-Oxo-ODE decreased c-myc gene expression. These results suggest that 13-Oxo-ODE has potential as a natural inhibitor targeting BCSCs through the degradation of c-Myc. CONCLUSION: In summary, 13-Oxo-ODE induced CSC death possibly through reduced c-Myc expression, making it a promising natural inhibitor of BCSCs.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral
6.
Exp Mol Med ; 55(5): 1013-1022, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121976

RESUMEN

The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1), primarily produced by hepatocytes and neutrophils, is a multifunctional protein that modulates various signaling cascades, mainly TGFß signaling. Serum LRG1 and neutrophil-derived LRG1 have different molecular weights due to differences in glycosylation, but the impact of the differential glycan composition in LRG1 on its cellular function is largely unknown. We previously reported that LRG1 can promote both angiogenic and neurotrophic processes under hyperglycemic conditions by interacting with LPHN2. Here, we determined the crystal structure of LRG1, identifying the horseshoe-like solenoid structure of LRG1 and its four N-glycosylation sites. In addition, our biochemical and cell-biological analyses found that the deglycosylation of LRG1, particularly the removal of glycans on N325, is critical for the high-affinity binding of LRG1 to LPHN2 and thus promotes LRG1/LPHN2-mediated angiogenic and neurotrophic processes in mouse tissue explants, even under normal glucose conditions. Moreover, the intracavernous administration of deglycosylated LRG1 in a diabetic mouse model ameliorated vascular and neurological abnormalities and restored erectile function. Collectively, these data indicate a novel role of LRG1 glycans as molecular switches that can tune the range of LRG1's cellular functions, particularly the LRG1/LPHN2 signaling axis.


Asunto(s)
Glicoproteínas , Transducción de Señal , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Glicoproteínas/metabolismo , Glicosilación
7.
Anticancer Res ; 43(3): 1091-1101, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854506

RESUMEN

BACKGROUND/AIM: Breast cancer stem cells (BCSCs) are involved in carcinogenesis of the breast and contribute to therapeutic resistance. In the present study, we found that isophysalin A acts as a potent cancer stem cell inhibitor and investigated the anti-CSC mechanism of action of isophysalin A on breast cancer. MATERIALS AND METHODS: The effect of isophysalin A on BCSCs was examined using a mammosphere formation, a colony formation and a cell migration assay, as well as CD44 (Cluster of differentiation 44)high/CD24 (Cluster of differentiation 24)low analysis, an apoptosis assay, quantitative real-time PCR, western blotting, an electrophoretic mobility shift assay, and a cytokine profiling assay. RESULTS: Isophysalin A inhibited cell proliferation, colony formation, cell migration, CSC formation, and mammosphere proliferation and increased BCSC apoptosis. The subpopulation of CD44high/CD24low was decreased by isophysalin A, which also reduced the DNA binding of Stat3 and the total and nuclear protein expression levels of Stat3 and phosphorylated Stat3. Furthermore, the mRNA and media IL-6/IL-8 levels of the mammosphere were also reduced by isophysalin A. CONCLUSION: Isophysalin A inhibited the Stat3 and IL-6 signaling pathways and induced CSC death; thus, isophysalin A may be a potential natural inhibitor of BCSCs.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Apoptosis , Bioensayo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Interleucina-6/genética , Transducción de Señal , Factor de Transcripción STAT3/genética
8.
BMC Microbiol ; 23(1): 3, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36600197

RESUMEN

BACKGROUND: Exploring the microbiome in multiple body sites of a livestock species informs approaches to promote its health and performance through efficient and sustainable modulation of these microbial ecosystems. Here, we employed 16S rRNA gene sequencing to describe the microbiome in the oropharyngeal cavity, proximal colon, and vaginal tract of Jeju Black pigs (JBP), which are native to the Korean peninsula. RESULTS: We sampled nine 7-month-old JBP gilts raised under controlled conditions. The most abundant phyla that we found within the oropharyngeal microbiota were Proteobacteria, Bacteroidetes, Fusobacteria and Firmicutes, collectively providing core features from twenty-five of their genera. We also found a proximal colonic microbial core composed of features from twenty of the genera of the two predominant phyla, Firmicutes, and Bacteroidetes. Remarkably, within the JBP vaginal microbiota, Bacteroidetes dominated at phylum level, contrary to previous reports regarding other pig breeds. Features of the JBP core vaginal microbiota, came from seventeen genera of the major phyla Bacteroidetes, Firmicutes, Proteobacteria, and Fusobacteria. Although these communities were distinct, we found some commonalities amongst them. Features from the genera Streptococcus, Prevotella, Bacillus and an unclassified genus of the family Ruminococcaceae were ubiquitous across the three body sites. Comparing oropharyngeal and proximal colonic communities, we found additional shared features from the genus Anaerorhabdus. Between oropharyngeal and vaginal ecosystems, we found other shared features from the genus Campylobacter, as well as unclassified genera from the families Fusobacteriaceae and Flavobacteriaceae. Proximal colonic and vaginal microbiota also shared features from the genera Clostridium, Lactobacillus, and an unclassified genus of Clostridiales. CONCLUSIONS: Our results delineate unique and ubiquitous features within and across the oropharyngeal, proximal colonic and vaginal microbial communities in this Korean native breed of pigs. These findings provide a reference for future microbiome-focused studies and suggest a potential for modulating these communities, utilizing ubiquitous features, to enhance health and performance of the JBP.


Asunto(s)
Microbiota , Porcinos , Animales , Femenino , ARN Ribosómico 16S/genética , Microbiota/genética , Sus scrofa , Firmicutes/genética , Proteobacteria/genética , Bacteroidetes/genética , Clostridiales/genética , Colon , República de Corea
9.
Anim Biotechnol ; 34(5): 1763-1775, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35311492

RESUMEN

Probiotics are used in pigs as nutritional supplements to improve health and induce the development of muscle and adipose tissue for enhancing growth performance and harvesting quality meat. In this study, we investigated the effects of Bacillus-based probiotic supplementation on the physiological and biochemical changes in Jeju native pigs (JNPs), including growth performance, backfat layers, blood parameters, serum IgG levels, myogenic and adipogenic markers, and expression of inflammatory markers. Average daily gain and feed efficiency were higher in the Bacillus diet group than in the basal diet group, while backfat thickness was lower in the Bacillus diet group than in the basal diet group. Blood biochemical parameters and hematological profiles were not altered significantly by Bacillus-based probiotic supplementation. Serum IgG concentration increased in the Bacillus diet group compared to the basal diet group. The Bacillus diet group showed increased adipogenic and myogenic markers expression in the longissimus dorsi muscle and adipose tissues. Overall, the data suggest that the Bacillus-based probiotics-supplemented diet regulates myogenesis and adipogenesis in JNPs and improves growth performance. We postulate that this may be due to the changes in the gut microbiota of pigs due to probiotic supplementation.


Asunto(s)
Bacillus , Animales , Porcinos , Adipogénesis , Suplementos Dietéticos , Dieta/veterinaria , Inmunoglobulina G , Alimentación Animal/análisis
10.
Cells ; 11(21)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359868

RESUMEN

Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer, but it has nephrotoxic side effects leading to acute kidney injury and subsequently chronic kidney disease (CKD). Previous work has focused on acute kidney tubular injury induced by cisplatin, whereas the chronic sequelae post-injury has not been well-explored. In the present study, we established a kidney fibroblast model of CKD induced by repeated administration of cisplatin (RAC) as a clinically relevant model. In NRK-49F rat kidney fibroblasts, RAC upregulated α-smooth muscle actin (α-SMA) and fibronectin proteins, suggesting that RAC induces kidney fibroblast-to-myofibroblast transformation. RAC also enhanced cell size, including the cell attachment surface area, nuclear area, and cell volume. Furthermore, RAC induced p21 expression and senescence-associated ß-galactosidase activity, suggesting that kidney fibroblasts exposed to RAC develop a senescent phenotype. Inhibition of p21 reduced cellular senescence, hypertrophy, and myofibroblast transformation induced by RAC. Intriguingly, after RAC, kidney fibroblasts were arrested at the G2/M phase. Repeated treatment with paclitaxel as an inducer of G2/M arrest upregulated p21, α-SMA, and fibronectin in the kidney fibroblasts. Taken together, these data suggest that RAC transforms kidney fibroblasts into myofibroblasts through G2/M arrest and cellular senescence.


Asunto(s)
Cisplatino , Insuficiencia Renal Crónica , Ratas , Animales , Cisplatino/farmacología , Cisplatino/metabolismo , Fibronectinas/metabolismo , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Senescencia Celular , Fibroblastos/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo
11.
J Plant Physiol ; 279: 153837, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279633

RESUMEN

The failure of midrib formation in rice leaf blades results in the drooping leaf (dl) phenotype. A normal DROOPING LEAF (DL) gene is necessary for leaf homeotic transformation, which affects midrib and pistil development. Genetic analysis was performed on a new drooping leaf (dl) mutant named dl-6 in rice. The dl-6 allelic mutant exhibited drooping leaves that were severely folded and twisted at the base but had normal flower structure. The dl-6 allele is a nuclear recessive trait that fits a 3:1 Mendelian segregation ratio. The dl-6 mutant leaves displayed an abnormal main vein (midrib-less) with undeveloped aerenchyma and vascular bundles, resulting in severe leaf drooping. The lack of a midrib in dl-6 caused weak mechanical support, which resulted in folding at the collar junction of the leaf base and downward bending. Through genetic mapping, the dl-6 allele was identified at approximately 28.2 cM on rice chromosome 3. The allele was caused by mutations within the DL (LOC_Os03g11600.1) gene, with specific amino acid substitutions and additions in the encoded protein of the YABBY transcription factor. The dl-6 mutant is a recessive allele encoding a dysfunctional YABBY transcription factor that regulates leaf midrib development and aerenchymatous clear cell structures, leading to a drooping leaf phenotype in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Factores de Transcripción/metabolismo , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fenotipo
12.
Nat Commun ; 13(1): 6292, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36272973

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year overall survival rate. Patients with PDAC display limited benefits after undergoing chemotherapy or immunotherapy modalities. Herein, we reveal that chemotherapy upregulates placental growth factor (PlGF), which directly activates cancer-associated fibroblasts (CAFs) to induce fibrosis-associated collagen deposition in PDAC. Patients with poor prognosis have high PIGF/VEGF expression and an increased number of PIGF/VEGF receptor-expressing CAFs, associated with enhanced collagen deposition. We also develop a multi-paratopic VEGF decoy receptor (Ate-Grab) by fusing the single-chain Fv of atezolizumab (anti-PD-L1) to VEGF-Grab to target PD-L1-expressing CAFs. Ate-Grab exerts anti-tumor and anti-fibrotic effects in PDAC models via the PD-L1-directed PlGF/VEGF blockade. Furthermore, Ate-Grab synergizes with gemcitabine by relieving desmoplasia. Single-cell RNA sequencing identifies that a CD141+ CAF population is reduced upon Ate-Grab and gemcitabine combination treatment. Overall, our results elucidate the mechanism underlying chemotherapy-induced fibrosis in PDAC and highlight a combinatorial therapeutic strategy for desmoplastic cancers.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anticuerpos de Cadena Única , Femenino , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Crecimiento Placentario/genética , Factor de Crecimiento Placentario/metabolismo , Anticuerpos de Cadena Única/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/farmacología , Fibrosis , Neoplasias Pancreáticas
13.
Sci Rep ; 12(1): 14595, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109557

RESUMEN

Synbiotics are feed supplements with the potential to promote health and productivity in pigs partly, through modulation of the intestinal microbiome. Our study used shotgun sequencing and 16S rRNA gene sequencing techniques to characterize the effect of a synbiotic containing three Lactobacillus species and a fructo-oligosaccharide on the proximal colonic microbiome of 4- to 7-month-old Korean native black gilts. With shotgun sequencing we constructed unique metagenome-assembled genomes of gut microbiota in Native Black Pig for the first time, which we then used for downstream analysis. Results showed that synbiotic treatment did not alter microbial diversity and evenness within the proximal colons, but altered composition of some members of the Lactobacillaceae, Enterococcaceae and Streptococcaceae families. Functional analysis of the shotgun sequence data revealed 8 clusters of orthologous groups (COGs) that were differentially represented in the proximal colonic microbiomes of synbiotic-treated Jeju black pigs relative to controls. In conclusion, our results show that administering this synbiotic causes changes in the functional capacity of the proximal colonic microbiome of the Korean native black pig. This study improves our understanding of the potential impact of synbiotics on the colonic microbiome of Korean native black pigs.


Asunto(s)
Microbiota , Simbióticos , Animales , Femenino , Promoción de la Salud , Metagenoma , Microbiota/genética , ARN Ribosómico 16S/genética , República de Corea , Sus scrofa/genética , Porcinos
14.
Nat Commun ; 13(1): 4434, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907924

RESUMEN

Insulin-like growth factors (IGFs) have pleiotropic roles in embryonic and postnatal growth and differentiation. Most serum IGFs are bound in a ternary complex with IGF-binding protein 3 (IGFBP3) and acid-labile subunit (ALS), extending the serum half-life of IGFs and regulating their availability. Here, we report cryo-EM structure of the human IGF1/IGFBP3/ALS ternary complex, revealing the detailed architecture of a parachute-like ternary complex and crucial determinants for their sequential and specific assembly. In vitro biochemical studies show that proteolysis at the central linker domain of IGFBP3 induces release of its C-terminal domain rather than IGF1 release from the ternary complex, yielding an intermediate complex that enhances IGF1 bioavailability. Our results provide mechanistic insight into IGF/IGFBP3/ALS ternary complex assembly and its disassembly upon proteolysis for IGF bioavailability, suggesting a structural basis for human diseases associated with IGF1 and IGFALS gene mutations such as complete ALS deficiency (ACLSD) and IGF1 deficiency.


Asunto(s)
Proteínas Portadoras/metabolismo , Glicoproteínas/metabolismo , Pérdida Auditiva Sensorineural , Trastornos del Crecimiento/genética , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mutación
15.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35745583

RESUMEN

Breast cancer is the leading cause of global cancer incidence and breast cancer stem cells (BCSCs) have been identified as the target to overcome breast cancer in patients. In this study, we purified a BCSC inhibitor from Dendropanax morbiferus H.Lév. leaves through several open column and high-performance liquid chromatography via activity-based purification. The purified cancer stem cell (CSC) inhibitor was identified as dihydroconiferyl ferulate using nuclear magnetic resonance and mass spectrometry. Dihydroconiferyl ferulate inhibited the proliferation and mammosphere formation of breast cancer cells and reduced the population of CD44high/CD24low cells. Dihydroconiferyl ferulate also induced apoptosis, inhibited the growth of mammospheres and reduced the level of total and nuclear EGFR protein. It suppressed the EGFR levels, the interaction of Stat3 with EGFR, and c-Myc protein levels. Our findings show that dihydroconiferyl ferulate reduced the level of nuclear epidermal growth factor receptor (EGFR) and induced apoptosis of BCSCs through nEGFR/Stat3-dependent c-Myc deregulation. Dihydroconiferyl ferulate exhibits potential as an anti-CSC agent through nEGFR/Stat3/c-Myc signaling.

16.
Exp Mol Med ; 54(5): 626-638, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35562586

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia, which causes endothelial dysfunction and peripheral neuropathy, ultimately leading to multiple complications. One prevalent complication is diabetic erectile dysfunction (ED), which is more severe and more resistant to treatment than nondiabetic ED. The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1) is a modulator of TGF-ß-mediated angiogenesis and has been proposed as a biomarker for a variety of diseases, including DM. Here, we found that the adhesion GPCR latrophilin-2 (LPHN2) is a TGF-ß-independent receptor of LRG1. By interacting with LPHN2, LRG1 promotes both angiogenic and neurotrophic processes in mouse tissue explants under hyperglycemic conditions. Preclinical studies in a diabetic ED mouse model showed that LRG1 administration into the penile tissue, which exhibits significantly increased LPHN2 expression, fully restores erectile function by rescuing vascular and neurological abnormalities. Further investigations revealed that PI3K, AKT, and NF-κB p65 constitute the key intracellular signaling pathway of the LRG1/LPHN2 axis, providing important mechanistic insights into LRG1-mediated angiogenesis and nerve regeneration in DM. Our findings suggest that LRG1 can be a potential new therapeutic option for treating aberrant peripheral blood vessels and neuropathy associated with diabetic complications, such as diabetic ED.


Asunto(s)
Diabetes Mellitus , Disfunción Eréctil , Animales , Disfunción Eréctil/etiología , Glicoproteínas/metabolismo , Humanos , Masculino , Ratones , Neovascularización Patológica , Receptores de Péptidos , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta/metabolismo
17.
Talanta ; 245: 123463, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35430531

RESUMEN

Scents released by trees are the secondary metabolites that play various roles, including indirect plant defense against insects, attraction to pollinators, communication, adaptation to heat resistance, environmental stress, and protection from predators. In this study, the scents of three individual trees designated as Korean natural monuments (pair of Chinese junipers, Chinese juniper, and horizontal Chinese juniper tree) were analyzed using headspace in-needle microextraction (HS-INME) method with graphene oxide-polyaniline (GO-PANI) adsorbent followed by gas chromatography-mass spectrometry (GC/MS). GO-PANI layer was coated on a stainless steel wire using cyclic voltammetry (CV). It was characterized through thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FT-IR), and field emission-scanning electron microscope (FE-SEM). As a result, it was confirmed that the GO-PANI coating was successfully prepared. α-Longipinene, α-cedrene, and cedrol, which are representative scent components of common juniper trees, were selected as target compounds through a preliminary test and used in the optimization processes. Response surface methodology (RSM) with Box Behnken Design (BBD) was applied to optimize the experimental conditions. The developed analytical method was validated by checking the limit of detection (LOD), the limit of quantitation (LOQ), recovery rate, sensitivity, and reproducibility. Significant scientific findings from three Korean natural monuments of Juniperus chinensis were characterized by their major scent components such as α-cedrene, γ-cadinene, thujopsene, and cedrol of pungent-woody base note.


Asunto(s)
Juniperus , Nanocompuestos , Compuestos de Anilina , Cromatografía de Gases y Espectrometría de Masas , Grafito , Nanocompuestos/química , Odorantes , Reproducibilidad de los Resultados , Microextracción en Fase Sólida/métodos , Espectroscopía Infrarroja por Transformada de Fourier
18.
Antioxidants (Basel) ; 11(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35204063

RESUMEN

Glasswort (Salicornia herbacea L.) is a halophyte that exhibits antioxidant and antidiabetic effects. Only a few studies have been conducted on its antioxidant effects. Here, we isolated an antioxidant using an activity-based purification method, and the resulting compound was identified as (9Z,11E)-13-Oxooctadeca-9,11-dienoic acid (13-KODE). We investigated its ability to suppress inflammatory responses and the molecular mechanisms underlying these abilities using lipopolysaccharide-stimulated RAW 264.7 macrophage cells. We studied the anti-inflammatory effects of 13-KODE derived from S. herbacea L on RAW 264.7 macrophages. 13-KODE inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production by suppressing inducible NO synthase and suppressed LPS-induced tumor necrosis factor and interleukin-1ß expression in RAW 264.7 macrophages. LPS-mediated nuclear localization of NF-κB and mitogen-activated protein kinase activation were inhibited by 13-KODE. 13-KODE significantly reduced LPS-induced production of reactive oxygen species and increased the expression of nuclear factor erythroid-2 like 2 (Nfe2I2) and heme oxygenase 1. Overall, our results indicate that 13-KODE may have potential for treating inflammation.

19.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884765

RESUMEN

Triple-negative breast cancer (TNBC) cells overexpress the epidermal growth factor receptor (EGFR). Nuclear EGFR (nEGFR) drives resistance to anti-EGFR therapy and is correlated with poor survival in breast cancer. Inhibition of EGFR nuclear translocation may be a reasonable approach for the treatment of TNBC. The anti-malarial drugs chloroquine and primaquine have been shown to promote an anticancer effect. The aim of the present study was to investigate the effect and mechanism of chloroquine- and primaquine-induced apoptosis of breast cancer cells. We showed that primaquine, a malaria drug, inhibits the growth, migration, and colony formation of breast cancer cells in vitro, and inhibits tumor growth in vivo. Primaquine induces damage to early endosomes and inhibits the nuclear translocation of EGFR. Primaquine inhibits the interaction of Stat3 and nEGFR and reduces the transcript and protein levels of c-Myc. Moreover, primaquine and chloroquine induce the apoptosis of breast cancer cells through c-Myc/Bcl-2 downregulation, induce early endosome damage and reduce nEGFR levels, and induce apoptosis in breast cancer through nEGFR/Stat3-dependent c-Myc downregulation. Our study of primaquine and chloroquine provides a rationale for targeting EGFR signaling components in the treatment of breast cancer.


Asunto(s)
Apoptosis/fisiología , Primaquina/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antimaláricos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Endosomas/metabolismo , Receptores ErbB/metabolismo , Humanos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/patología
20.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439571

RESUMEN

Inflammation is the first response of the immune system against bacterial pathogens. This study isolated and examined an antioxidant derived from Lactobacillus fermentation products using cultured media with 1% beet powder. The antioxidant activity of the beet culture media was significantly high. Antioxidant activity-guided purification and repeated sample isolation yielded an isolated compound, which was identified as 5-hydoxymaltol using nuclear magnetic resonance spectrometry. We examined the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation of macrophages. 5-Hydroxymaltol suppressed nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. It also suppressed tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, and inducible nitric oxide synthase (iNOS) in the messenger RNA and protein levels in LPS-treated RAW 264.7 cells. Moreover, it suppressed LPS-induced nuclear translocation of NF-κB (p65) and mitogen-activated protein kinase activation. Furthermore, 5-hydroxymaltol reduced LPS-induced reactive oxygen species (ROS) production as well as increased nuclear factor erythroid 2-related factor 2 and heme oxygenase 1 expression. Overall, this study found that 5-hydroxymaltol has anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophage cells based on its inhibition of pro-inflammatory cytokine production depending on the nuclear factor κB signaling pathway, inhibition of LPS-induced reactive oxygen species production, inhibition of LPS-induced mitogen-activated protein kinase induction, and induction of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling pathway. Our data showed that 5-hydroxymaltol may be an effective compound for treating inflammation-mediated diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...