Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomol Ther (Seoul) ; 31(3): 253-263, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37095734

RESUMEN

The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

2.
Pharmaceutics ; 14(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890318

RESUMEN

Hispolon is a potent anticancer, anti-inflammatory, antioxidant, and antidiabetic agent isolated from Phellinus linteus, an oriental medicinal mushroom. However, the immunomodulatory mechanisms by which hispolon affects macrophages and lymphocytes remain poorly characterized. We investigated the immunomodulatory effects of hispolon on oxidative stress, inflammatory responses, and lymphocyte proliferation using lipopolysaccharide (LPS)-treated RAW264.7 macrophages or mitogen/alloantigen-treated mouse splenocytes. Hispolon inhibited LPS-induced reactive oxygen and nitrogen species (ROS/RNS) generation and decreased total sulfhydryl (SH) levels in a cell-free system and RAW264.7 cells. Hispolon exerted significant anti-inflammatory effects by inhibiting production of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in LPS-treated RAW264.7 cells. Hispolon also modulated NF-κB and STAT3 activation by suppressing the NF-κB p65 interaction with phospho-IκBα and the STAT3 interaction with JAK1, as determined via coimmunoprecipitation analysis. Additionally, hispolon significantly decreased lymphocyte proliferation, T cell responses and T helper type 1 (Th1)/type 2 (Th2) cytokines production in mitogen/alloantigen-treated splenocytes. We conclude that hispolon exerts immunomodulatory effects on LPS-treated macrophages or mitogen/alloantigen-treated splenocytes through antioxidant, anti-inflammatory, and antiproliferative activities. Thus, hispolon may be a therapeutic agent for treating immune-mediated inflammatory diseases.

3.
PLoS One ; 15(7): e0236788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32735629

RESUMEN

This study aimed to establish and reproduce transgenic pigs expressing human growth hormone (hGH) in their milk. We also aimed to purify hGH from the milk, to characterize the purified protein, and to assess the potential of our model for mass production of therapeutic proteins using transgenic techniques. Using ~15.5 L transgenic pig milk, we obtained proteins with ≥ 99% purity after three pre-treatments and five column chromatography steps. To confirm the biosimilarity of our milk-derived purified recombinant hGH (CGH942) with commercially available somatropin (Genotropin), we performed spectroscopy, structural, and biological analyses. We observed no difference between the purified protein and Genotropin samples. Furthermore, rat models were used to assess growth promotion potential. Our results indicate that CGH942 promotes growth, by increasing bone development and body weight. Toxicity assessments revealed no abnormal findings after 4 weeks of continuous administration and 2 weeks of recovery. The no-observed-adverse-effect level for both males and females was determined to be 0.6 mg/kg/day. Thus, no toxicological differences were observed between commercially available somatropin and CGH942 obtained from transgenic pig milk. In conclusion, we describe a transgenic technique using pigs, providing a new platform to produce human therapeutic proteins.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Hormona de Crecimiento Humana , Proteínas Recombinantes , Animales , Cromatografía de Afinidad , Femenino , Técnicas de Transferencia de Gen , Hormona de Crecimiento Humana/química , Hormona de Crecimiento Humana/genética , Hormona de Crecimiento Humana/metabolismo , Humanos , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Porcinos
4.
Molecules ; 25(10)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456051

RESUMEN

The purpose of this study was to determine the antiallergic effects of AF-343, a mixture of natural plant extracts from Cassia tora L., Ulmus pumila L., and Taraxacum officinale, on rat basophilic leukemia (RBL-2H3) cells. The inhibitory effects on cell degranulation, proinflammatory cytokine secretion, and reactive oxygen species (ROS) production were studied in compound 48/80-treated RBL-2H3 cells. The bioactive compounds in AF-343 were also identified by HPLC-UV. AF-343 was found to effectively suppress compound 48/80-induced b-hexosaminidase release, and interleukin (IL)-4 and tumor necrosis factor-a (TNF-a) production in RBL-2H3 cells. In addition, AF-343 exhibited DPPH free radical scavenging effects in vitro (half-maximal inhibitory concentration (IC50) = 105 µg/mL) and potently inhibited compound 48/80-induced cellular ROS generation in a 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. Specifically, treatment with AF-343 exerted stronger antioxidant effects in vitro and antiallergic effects in cells than treatment with three single natural plant extracts. Furthermore, AF-343 was observed to contain bioactive compounds, including catechin, aurantio-obtusin, and chicoric acid, which have been reported to elicit antiallergic responses. This study reveals that AF-343 attenuates allergic responses via suppression of b-hexosaminidase release, IL-4 and TNF-a secretion, and ROS generation, perhaps through mechanisms related to catechin, aurantio-obtusin, and chicoric acid. The results indicate that AF-343 can be considered a treatment for various allergic diseases.


Asunto(s)
Cinnamomum aromaticum/química , Hipersensibilidad/tratamiento farmacológico , Taraxacum/química , Ulmus/química , Animales , Antialérgicos/química , Antialérgicos/farmacología , Degranulación de la Célula/efectos de los fármacos , Combinación de Medicamentos , Humanos , Mastocitos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , p-Metoxi-N-metilfenetilamina
5.
Molecules ; 25(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380665

RESUMEN

Quercus mongolica (QM)-a member of the Fagaceae family-has been used as traditional medicine in Korea, China and Mongolia as a treatment for inflammation of oral, genital or anal mucosa and for external inflammation of skin. To treat acne vulgaris (AV), we evaluated the inhibition of inflammatory cytokines (IL-6 and IL-8) of QM leaf extract (QML) and its main compound, pedunculagin (PD) in vitro and 5α-reductase inhibitory activity by western blotting. As results, QML and PD showed potent NO production inhibitory activity compared with the positive control (PC), NG-monomethyl-L-arginine (L-NMMA). QML and PD was also showed the decreases of IL-6 and IL-8 compared with the PC, EGCG and exhibited potent 5α-reductase type 1 inhibitory activities compared with the PC, dutasteride.


Asunto(s)
Inhibidores de 5-alfa-Reductasa/farmacología , Antiinflamatorios/farmacología , Quercus/química , Taninos/farmacología , Acné Vulgar/tratamiento farmacológico , Línea Celular , Colestenona 5 alfa-Reductasa/metabolismo , Regulación hacia Abajo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/efectos adversos , Medicina Tradicional , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/química , omega-N-Metilarginina/metabolismo
6.
J Gerontol A Biol Sci Med Sci ; 75(3): 452-458, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31112599

RESUMEN

Age-associated renal fibrosis is commonly observed, with a decline in renal function during aging. Although peroxisome proliferator-activated receptors α/ß (PPARα/ß) activation has been shown to exert beneficial effects on age-associated renal changes, its effects on age-associated renal fibrosis have not been investigated yet. Here, we show that the PPARα/ß activator, MHY2013, can significantly alter lipid metabolism in renal tubule epithelial cells and attenuate renal fibrosis in aged Sprague Dawley (SD) rats. We found that MHY2013 significantly increased nuclear translocation and activity of PPARα/ß in NRK52E renal epithelial cells. Moreover, the enhanced PPARα/ß activity increased the expression of fatty acid oxidation-associated PPARα/ß target genes. In addition, transforming growth factor-ß (TGF-ß)- and oleic acid-induced lipid accumulation and fibrosis-associated gene expression were decreased in NRK52E cells by MHY2013 pretreatment. To evaluate the effects of MHY2013 on age-associated renal fibrosis, aged SD rates were orally administered MHY2013 (1 and 5 mg/kg) daily for 1 month. MHY2013 efficiently increased PPARα/ß activation and reduced renal lipid accumulation in aged SD rat kidneys. Furthermore, renal fibrosis was significantly decreased by MHY2013, indicating the importance of renal lipid metabolism in age-associated renal fibrosis. Taken together, our results suggest that activation of PPARα/ß signaling during aging prevents age-associated renal fibrosis.


Asunto(s)
Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Riñón/patología , PPAR alfa/agonistas , PPAR-beta/agonistas , Factores de Edad , Animales , Fibrosis/prevención & control , Masculino , PPAR alfa/efectos de los fármacos , PPAR-beta/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Aging Dis ; 10(2): 367-382, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31011483

RESUMEN

Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.

8.
J Ethnopharmacol ; 231: 10-18, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395976

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Sparassis crispa, also known as cauliflower mushroom, has been used historically in traditional Asian medicine. It possesses various biological activities, such as immunopotentiation, anti-diabetes, anti-cancer, and anti-inflammatory effects. Recently, we isolated the non-aqueous fraction from methanol extract of S. crispa (SCF4) by using water-organic solvent mixtures and high-performance liquid chromatography (HPLC). In the present study, we identified the anti-inflammatory activity and action mechanism of SCF4 in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells. MATERIALS AND METHODS: The chloroform layer isolated from S. crispa methanol extract was separated into seven fractions using preparative HPLC. The fractions were then applied to NO assay to identify the fraction with the best anti-inflammatory activity. The inflammation inhibitory effect and underlying mechanism of SCF4 in LPS-stimulated RAW264.7 cells were assessed using WST-1 assay, enzyme-linked immunosorbent assay (ELISA), ROS assay, and Western blot analysis. RESULTS: SCF4 significantly suppressed LPS-induced production of pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)- 6, and IL-1ß, without cytotoxicity. In addition, SCF4 downregulated not only the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), but also the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) stimulated by LPS. SCF4 also blocked the nuclear translocation of NF-κB via reduction of inhibitor of κB alpha (IκBα) degradation. Furthermore, SCF4 inhibited the phosphorylation of transforming growth factor beta-activated kinase 1 (TAK1), an important upstream factor of NF-κB and MAPK signaling mediated through toll-like receptor (TLR). CONCLUSIONS: These findings demonstrate for the first time the correlation between the anti-inflammatory activity of SCF4 and TLR-mediated NF-κB and MAPK signaling pathways in LPS-stimulated RAW264.7 macrophage cells, suggesting that the non-aqueous extract of S. crispa could be applied as a promising natural product for the prevention and treatment of inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Mezclas Complejas/farmacología , Polyporales , Animales , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo
9.
Exp Dermatol ; 28(6): 734-737, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30554432

RESUMEN

Tyrosinase is a key enzyme that catalyses the initial rate-limiting steps of melanin synthesis. Due to its critical role in melanogenesis, various attempts were made to find potent tyrosinase inhibitors although many were not safe and effective in vivo. We evaluated tyrosinase inhibitory activity of six compounds. Among them, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-thioxothiazolidin-4-one (5-HMT) had the greatest inhibitory effect and potency as the IC50 value of 5-HMT was lower than that of kojic acid, widely-known tyrosinase inhibitor. Based on in silico docking simulation, 5-HMT had a greater binding affinity than kojic acid with a different binding conformation in the tyrosinase catalytic site. Furthermore, its skin depigmentation effect was confirmed in vivo as 5-HMT topical treatment significantly reduced UVB-induced melanogenesis in HRM2 hairless mice. In conclusion, our study demonstrated that 5-HMT has a greater binding affinity and inhibitory effect on tyrosinase and may be a potential candidate for a therapeutic agent for preventing melanogenesis.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Melaninas/química , Melanocitos/citología , Monofenol Monooxigenasa/antagonistas & inhibidores , Animales , Diseño de Fármacos , Concentración 50 Inhibidora , Ratones , Simulación del Acoplamiento Molecular , Pironas/farmacología , Pigmentación de la Piel , Tiazolidinas/farmacología , Rayos Ultravioleta
10.
Toxicol Res ; 34(4): 333-341, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30370008

RESUMEN

Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B (NF-κB) activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote NF-κB activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and NF-κB activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with NF-κB activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.

11.
Biosci Biotechnol Biochem ; : 1-9, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29521165

RESUMEN

As part of continued efforts for the development of new tyrosinase inhibitors, (Z)-5-(substituted benzylidene)-2-iminothiazolidin-4-one derivatives (1a - 1l) were rationally synthesized and evaluated for their inhibitory potential in vitro. These compounds were designed and synthesized based on the structural attributes of a ß-phenyl-α,ß-unsaturated carbonyl scaffold template. Among these compounds, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (1e, MHY773) exhibited the greatest tyrosinase inhibition (IC50 = 2.87 µM and 8.06 µM for monophenolase and diphenolase), and outperformed the positive control, kojic acid (IC50 = 15.59 and 31.61 µM). The kinetic and docking studies demonstrated that MHY773 interacted with active site of tyrosinase. Moreover, a melanin quantification assay demonstrated that MHY773 attenuates α-melanocyte-stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin contents in B16F10 melanoma cells. Taken together, these data suggest that MHY773 suppressed the melanin production via the inhibition of tyrosinase activity. MHY773 is a promising for the development of effective pharmacological and cosmetic agents for skin-whitening.

12.
Oncotarget ; 9(5): 5578-5587, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464019

RESUMEN

Recent studies have shown a role for miRNAs in aging and age-related diseases, and the modulation of miRNA expression by diet attracts attention as a new therapeutic strategy. Here, we focused on identifying specific exosomal miRNAs derived from serum of aged rats and the effect of short-term calorie restriction (CR) on their expression. Exosomes from serum of young (7-month), old (22-month), and old-CR Sprague Dawley rats were isolated and characterized by transmission electron microscopy analyses, dynamic light scattering measurements, and Western blotting. A total of 12 significantly expressed miRNAs in serum exosomes of young and old rats were identified by next generation sequencing. After analysis of qRT-PCR, we found that miR-500-3p and miR-770-3p expression was significantly upregulated by aging and downregulated by CR. Furthermore, receiver operating characteristic (ROC) curve revealed that the selected miRNAs represented high accuracy in discriminating old rats from young rats. Finally, PANTHER analysis predicted selected miRNAs targets genes involved in Wnt/chemokines and cytokines -related inflammatory signaling pathway and function as transcription factor. In conclusion, our results suggest that the expression of serum exosomal miR-500-3p and miR-770-3p was significantly increased with aging, whereas these were decreased by CR, and age-/CR-modulated exosomal miR-500-3p and miR-770-3p could potentially be used as informative biomarkers candidates for aging.

13.
J Am Soc Nephrol ; 29(4): 1223-1237, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29440279

RESUMEN

Defects in the renal fatty acid oxidation (FAO) pathway have been implicated in the development of renal fibrosis. Although, compared with young kidneys, aged kidneys show significantly increased fibrosis with impaired kidney function, the mechanisms underlying the effects of aging on renal fibrosis have not been investigated. In this study, we investigated peroxisome proliferator-activated receptor α (PPARα) and the FAO pathway as regulators of age-associated renal fibrosis. The expression of PPARα and the FAO pathway-associated proteins significantly decreased with the accumulation of lipids in the renal tubular epithelial region during aging in rats. In particular, decreased PPARα protein expression associated with increased expression of PPARα-targeting microRNAs. Among the microRNAs with increased expression during aging, miR-21 efficiently decreased PPARα expression and impaired FAO when ectopically expressed in renal epithelial cells. In cells pretreated with oleic acid to induce lipid stress, miR-21 treatment further enhanced lipid accumulation. Furthermore, treatment with miR-21 significantly exacerbated the TGF-ß-induced fibroblast phenotype of epithelial cells. We verified the physiologic importance of our findings in a calorie restriction model. Calorie restriction rescued the impaired FAO pathway during aging and slowed fibrosis development. Finally, compared with kidneys of aged littermate controls, kidneys of aged PPARα-/- mice showed exaggerated lipid accumulation, with decreased activity of the FAO pathway and a severe fibrosis phenotype. Our results suggest that impaired renal PPARα signaling during aging aggravates renal fibrosis development, and targeting PPARα is useful for preventing age-associated CKD.


Asunto(s)
Envejecimiento/metabolismo , Ácidos Grasos/metabolismo , Riñón/patología , PPAR alfa/metabolismo , Envejecimiento/patología , Animales , Restricción Calórica , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Fibrosis , Regulación de la Expresión Génica , Riñón/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/farmacología , Ácido Oléico/farmacología , Oxidación-Reducción , PPAR alfa/deficiencia , PPAR alfa/genética , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/fisiología
14.
Bioorg Med Chem Lett ; 28(4): 684-688, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29402742

RESUMEN

The NAD+-dependent deacetylase SIRT1, which is associated with the improvement of metabolic syndromes, such as type 2 diabetes, is a well-known longevity-related gene. Several in vitro and in vivo studies have shown the known protective effects of SIRT1 activators, such as resveratrol and SRT1720, on diabetes- or obesity-induced fatty liver and insulin resistance. Here, we newly synthesized 18 benzoxazole hydrochloride derivatives based on the structure of resveratrol and SRT1720. We performed an in vitro SIRT1 activity assay to identify the strongest SIRT1 activator. The assay confirmed MHY2233 to be the strongest SIRT1 activator (1.5-fold more potent than resveratrol), and docking simulation showed that the binding affinity of MHY2233 was higher than that of resveratrol and SRT1720. To investigate its beneficial effects, db/db mice were orally administered MHY2233 for 1 month, and various metabolic parameters were assessed in the serum and liver tissues. MHY2233 markedly ameliorated insulin signaling without affecting body weight in db/db mice. In particular, the mRNA expression of lipogenic genes, such as acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein, which increased in db/db mice, decreased following oral treatment with MHY2233. In conclusion, the novel SIRT1 activator MHY2233 reduced lipid accumulation and improved insulin resistance. This finding may contribute toward therapeutic approaches for fatty liver disease and glucose tolerance.


Asunto(s)
Benzoxazoles/farmacología , Activadores de Enzimas/farmacología , Hígado Graso/tratamiento farmacológico , Intolerancia a la Glucosa/tratamiento farmacológico , Sirtuina 1/metabolismo , Acetil-CoA Carboxilasa/genética , Animales , Benzoxazoles/administración & dosificación , Benzoxazoles/síntesis química , Peso Corporal , Diabetes Mellitus/tratamiento farmacológico , Activadores de Enzimas/administración & dosificación , Activadores de Enzimas/síntesis química , Ácido Graso Sintasas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/química , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Masculino , Síndrome Metabólico/tratamiento farmacológico , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Resveratrol , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Estilbenos/química , Estilbenos/farmacología
15.
Biol Pharm Bull ; 41(1): 73-79, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29311485

RESUMEN

Abnormal pigmentation owing to excessive melanin synthesis can result in serious problems such as freckles, age-spots, and melanoma. Tyrosinase inhibitors have been an interesting target for the treatment of hyperpigmentation because tyrosinase is the rate-limiting enzyme in melanin synthesis. The screening for strong tyrosinase inhibitors led to the finding of the flavonoid galangin, which showed notable inhibitory effects on mushroom tyrosinase. The IC50 value of galangin (3.55±0.39 µM) was lower than that of kojic acid (48.55±1.79 µM), which was used as a positive control. In silico docking simulation and mechanistic studies demonstrated that galangin interacted with the catalytic sites of tyrosinase and competed with tyrosine. In B16F10 melanoma cells stimulated with α-melanocyte stimulating hormone, galangin inhibited tyrosinase activity as well as melanin production. Although high doses of galangin were cytotoxic, no cytotoxic effects were observed at low doses. In addition, the in vivo efficacy of galangin was evaluated in HRM2 melanin-possessing hairless mice. As measured by the skin-whitening index and melanin staining, repeated UVB exposure increased skin melanin synthesis. Galangin application significantly reduced melanogenesis induced by UVB exposure. Collectively, our data indicates that galangin shows strong tyrosinase inhibition activity, which suggests that it may be an effective skin-whitening agent.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Flavonoides/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Monofenol Monooxigenasa/antagonistas & inhibidores , Agaricales/enzimología , Animales , Antineoplásicos Fitogénicos/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Flavonoides/farmacología , Melanoma Experimental/enzimología , Melanoma Experimental/patología , Ratones , Ratones Pelados , Simulación del Acoplamiento Molecular , Pigmentación de la Piel/efectos de los fármacos
16.
Oncotarget ; 8(53): 91481-91493, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207659

RESUMEN

Tyrosinase is a key player in ultraviolet-induced melanogenesis. Because excessive melanin accumulation in the skin can induce hyperpigmentation, the development of tyrosinase inhibitors has attracted attention in cosmetic-related fields. However, side effects including toxicity and low selectivity have limited the use of many tyrosinase inhibitors in cosmetics. We synthesized 12 novel 2-(substituted benzylidene)malononitrile derivatives and investigated their anti-melanogenic activities. Of these 12 compounds, 2-(3, 4-dihydroxy benzylidene)malononitrile (BMN11) exhibited the strongest inhibitory activity against tyrosinase (IC50 = 17.05 µM). In parallel with this, BMN11 treatment notably decreased alpha-melanocyte-stimulating hormone-induced melanin accumulation in B16F10, cells without toxicity and also decreased melanin accumulation in a human skin model. As a mechanism underlying the BMN11-mediated anti-melanogenic effect, docking simulation showed that BMN11 can directly bind to tyrosinase by forming two hydrogen bonds with GLY281 and ASN260 residues, and via three hydrophobic interactions with VAL283, PHE264, and ALA286 residues in the tyrosinase binding pocket, and this likely contributes to its inhibitory effect on tyrosinase. Consistently, Lineweaver-Burk and Cornish-Bowden plots showed that BMN11 is a competitive inhibitor of tyrosinase. We concluded that BMN11 may be a novel tyrosinase inhibitor that could be used in cosmetics.

17.
Oncotarget ; 8(53): 91662-91673, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207675

RESUMEN

Liver inflammation is closely associated with metabolic syndrome. Oxidative stress plays a synergistic role in inflammation by activating nuclear factor kappa B (NF-κB) signaling in the liver. Therefore, substantial efforts have been made to develop compounds that inhibit the generation of oxidative stress and activation of NF-κB. We synthesized twenty-six novel 5-(substituted benzyl)-2-oxo- and 5-(substituted benzyl)-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione derivatives for the development of potential antioxidants and examined their biological activities in vitro and in vivo. Thio-barbiturate-derived compounds 5-[4-hydroxy-3-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione (2d) and 5-[4-hydroxy-3,5-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione (2l) had the strongest inhibitory effect on reactive oxygen species and peroxynitrite generation in vitro. Furthermore, oral administration of compounds 2d and 2l in mice notably suppressed lipopolysaccharide (LPS)-induced oxidative stress and NF-κB activation in the liver. Because macrophages play an essential role in liver inflammation, we investigated the effects of these compounds on inflammatory signaling in LPS-induced RAW264.7 macrophages. LPS-induced NF-κB activation and protein expression of cyclooxygenase 2 and inducible nitric oxide synthase were inhibited by pretreatment of these compounds in macrophages. In parallel with this finding, the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and AKT signalings, which are upstream activators of p65, were decreased by these compounds in macrophages. Our study suggests that compounds 2d and 2l inhibit oxidative stress and NF-кB-mediated inflammation, at least partially, through suppressing PTEN/AKT signaling. Therefore, these compounds may be useful as therapeutic agents for the amelioration of inflammatory diseases.

18.
Aging Cell ; 16(5): 1026-1034, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28665028

RESUMEN

We have recently reported that TLR-related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age-related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6-month-old young rats and 20-month-old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1ß, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/ß/JNK/NF-κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro-inflammatory processes via the activation of the TLR7/IKKα/ß/JNK/NF-κB signaling pathway, and highlights its causative role as a possible therapeutic target in age-related chronic renal inflammation.


Asunto(s)
Envejecimiento/genética , Células Epiteliales/metabolismo , MAP Quinasa Quinasa 4/genética , FN-kappa B/genética , ARN Pequeño no Traducido/genética , Receptor Toll-Like 7/genética , Envejecimiento/inmunología , Envejecimiento/metabolismo , Animales , Línea Celular , Células Epiteliales/citología , Células Epiteliales/inmunología , Regulación del Desarrollo de la Expresión Génica , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Isoenzimas/genética , Isoenzimas/inmunología , Isoenzimas/metabolismo , Riñón/citología , Riñón/inmunología , Riñón/metabolismo , MAP Quinasa Quinasa 4/inmunología , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , FN-kappa B/metabolismo , ARN Pequeño no Traducido/inmunología , ARN Pequeño no Traducido/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
20.
Autophagy ; 13(7): 1113-1129, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28575583

RESUMEN

Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 µg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.


Asunto(s)
Autofagia , Endotoxemia/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipopolisacáridos/farmacología , Hígado/metabolismo , Factores de Edad , Animales , Autofagia/efectos de los fármacos , Cloroquina/farmacología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Ayuno/metabolismo , Hepatitis Animal/metabolismo , Hepatocitos/enzimología , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Hígado/ultraestructura , Ratones , Ratones Endogámicos C57BL , Sirolimus/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...