Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38964419

RESUMEN

PURPOSE: To investigate the potential of virtual contrast-enhanced MRI (VCE-MRI) for gross-tumor-volume (GTV) delineation of nasopharyngeal carcinoma (NPC) using multi-institutional data. METHODS AND MATERIALS: This study retrospectively retrieved T1-weighted (T1w), T2-weighted (T2w) MRI, gadolinium-based contrast-enhanced MRI (CE-MRI) and planning CT of 348 biopsy-proven NPC patients from three oncology centers. A multimodality-guided synergistic neural network (MMgSN-Net) was trained using 288 patients to leverage complementary features in T1w and T2w MRI for VCE-MRI synthesis, which was independently evaluated using 60 patients. Three board-certified radiation oncologists and two medical physicists participated in clinical evaluations in three aspects: image quality assessment of the synthetic VCE-MRI, VCE-MRI in assisting target volume delineation, and effectiveness of VCE-MRI-based contours in treatment planning. The image quality assessment includes distinguishability between VCE-MRI and CE-MRI, clarity of tumor-to-normal tissue interface and veracity of contrast enhancement in tumor invasion risk areas. Primary tumor delineation and treatment planning were manually performed by radiation oncologists and medical physicists, respectively. RESULTS: The mean accuracy to distinguish VCE-MRI from CE-MRI was 31.67%; no significant difference was observed in the clarity of tumor-to-normal tissue interface between VCE-MRI and CE-MRI; for the veracity of contrast enhancement in tumor invasion risk areas, an accuracy of 85.8% was obtained. The image quality assessment results suggest that the image quality of VCE-MRI is highly similar to real CE-MRI. The mean dosimetric difference of planning target volumes were less than 1Gy. CONCLUSIONS: The VCE-MRI is highly promising to replace the use of gadolinium-based CE-MRI in tumor delineation of NPC patients.

2.
Quant Imaging Med Surg ; 14(6): 4098-4109, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846293

RESUMEN

Background: Different image modalities capture different aspects of a patient. It is desirable to produce images that capture all such features in a single image. This research investigates the potential of multi-modal image fusion method to enhance magnetic resonance imaging (MRI) tumor contrast and its consistency across different patients, which can capture both the anatomical structures and tumor contrast clearly in one image, making MRI-based target delineation more accurate and efficient. Methods: T1-weighted (T1-w) and T2-weighted (T2-w) magnetic resonance (MR) images from 80 nasopharyngeal carcinoma (NPC) patients were used. A novel image fusion method, Pixelwise Gradient Model for Image Fusion (PGMIF), which is based on the pixelwise gradient to capture the shape and a generative adversarial network (GAN) term to capture the image contrast, was introduced. PGMIF is compared with several popular fusion methods. The performance of fusion methods was quantified using two metrics: the tumor contrast-to-noise ratio (CNR), which aims to measure the contrast of the edges, and a Generalized Sobel Operator Analysis, which aims to measure the sharpness of edge. Results: The PGMIF method yielded the highest CNR [median (mdn) =1.208, interquartile range (IQR) =1.175-1.381]. It was a statistically significant enhancement compared to both T1-w (mdn =1.044, IQR =0.957-1.042, P<5.60×10-4) and T2-w MR images (mdn =1.111, IQR =1.023-1.182, P<2.40×10-3), and outperformed other fusion models: Gradient Model with Maximum Comparison among Images (GMMCI) (mdn =0.967, IQR =0.795-0.982, P<5.60×10-4), Deep Learning Model with Weighted Loss (DLMWL) (mdn =0.883, IQR =0.832-0.943, P<5.60×10-4), Pixelwise Weighted Average (PWA) (mdn =0.875, IQR =0.806-0.972, P<5.60×10-4) and Maximum of Images (MoI) (mdn =0.863, IQR =0.823-0.991, P<5.60×10-4). In terms of the Generalized Sobel Operator Analysis, a measure based on Sobel operator to measure contrast enhancement, PGMIF again exhibited the highest Generalized Sobel Operator (mdn =0.594, IQR =0.579-0.607; mdn =0.692, IQR =0.651-0.718 for comparison with T1-w and T2-w images), compared to: GMMCI (mdn =0.491, IQR =0.458-0.507, P<5.60×10-4; mdn =0.495, IQR =0.487-0.533, P<5.60×10-4), DLMWL (mdn =0.292, IQR =0.248-0.317, P<5.60×10-4; mdn =0.191, IQR =0.179-0.243, P<5.60×10-4), PWA (mdn =0.423, IQR =0.383-0.455, P<5.60×10-4; mdn =0.448, IQR =0.414-0.463, P<5.60×10-4) and MoI (mdn =0.437, IQR =0.406-0.479, P<5.60×10-4; mdn =0.540, IQR =0.521-0.636, P<5.60×10-4), demonstrating superior contrast enhancement and sharpness compared to other methods. Conclusions: Based on the tumor CNR and Generalized Sobel Operator Analysis, the proposed PGMIF method demonstrated its capability of enhancing MRI tumor contrast while keeping the anatomical structures of the input images. It holds promises for NPC tumor delineation in radiotherapy.

3.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853992

RESUMEN

Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE: The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.

4.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38766079

RESUMEN

Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.

5.
Liver Cancer ; 13(3): 265-276, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756147

RESUMEN

Introduction: While combination of stereotactic body radiotherapy (SBRT) and immunotherapy are promising, their efficacy and safety have not been compared with SBRT-alone in patients with unresectable hepatocellular carcinoma (HCC). Methods: This retrospective study included 100 patients with nonmetastatic, unresectable HCC in two hospitals. Eligible patients had tumor nodules ≤3 and Child-Pugh liver function score of A5 to B7. Seventy patients received SBRT-alone, and 30 patients underwent combined SBRT and immunotherapy (SBRT-IO). Overall survival (OS), time to progression (TTP), overall response rate (ORR), and toxicity were analyzed. We adjusted for the potential confounding factors using propensity score matching. Results: The median tumor size was 7.3 cm (range, 2.6-18 cm). Twenty-five (25%) of patients had vascular invasion. Before propensity score matching, the 1-year and 3-year OS rate was 89.9% and 59.8% in the SBRT-IO group and 75.7% and 42.3% in SBRT-alone group (p = 0.039). After propensity score matching (1:2), 25 and 50 patients were selected from the SBRT-IO and SBRT-alone group. The 1-year and 3-year OS was 92.0% and 63.9% in the SBRT-IO group versus 74.0% and 43.3% in the SBRT-alone group (p = 0.034). The 1-year and 3-year TTP was better in SBRT-IO group (1-year: 68.9% vs. 58.9% and 3-year: 61.3% vs. 32.5%, p = 0.057). The ORR of 88% (complete response [CR]: 56%, partial response [PR]: 22%) in SBRT-IO arm was significantly better than 50% (CR: 20%, PR: 30%) in the SBRT-alone arm (p = 0.006). Three patients (12%) developed ≥grade 3 immune-related treatment adverse events (n = 2 hepatitis, n = 1 dermatitis) leading to permanent treatment discontinuation. Conclusion: Adding immunotherapy to SBRT resulted in better survival with manageable toxicities. Prospective randomized trial is warranted.

6.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473363

RESUMEN

Background: The development of advanced computational models for medical imaging is crucial for improving diagnostic accuracy in healthcare. This paper introduces a novel approach for virtual contrast enhancement (VCE) in magnetic resonance imaging (MRI), particularly focusing on nasopharyngeal cancer (NPC). Methods: The proposed model, Pixelwise Gradient Model with GAN for Virtual Contrast Enhancement (PGMGVCE), makes use of pixelwise gradient methods with Generative Adversarial Networks (GANs) to enhance T1-weighted (T1-w) and T2-weighted (T2-w) MRI images. This approach combines the benefits of both modalities to simulate the effects of gadolinium-based contrast agents, thereby reducing associated risks. Various modifications of PGMGVCE, including changing hyperparameters, using normalization methods (z-score, Sigmoid and Tanh) and training the model with T1-w or T2-w images only, were tested to optimize the model's performance. Results: PGMGVCE demonstrated a similar accuracy to the existing model in terms of mean absolute error (MAE) (8.56 ± 0.45 for Li's model; 8.72 ± 0.48 for PGMGVCE), mean square error (MSE) (12.43 ± 0.67 for Li's model; 12.81 ± 0.73 for PGMGVCE) and structural similarity index (SSIM) (0.71 ± 0.08 for Li's model; 0.73 ± 0.12 for PGMGVCE). However, it showed improvements in texture representation, as indicated by total mean square variation per mean intensity (TMSVPMI) (0.124 ± 0.022 for ground truth; 0.079 ± 0.024 for Li's model; 0.120 ± 0.027 for PGMGVCE), total absolute variation per mean intensity (TAVPMI) (0.159 ± 0.031 for ground truth; 0.100 ± 0.032 for Li's model; 0.153 ± 0.029 for PGMGVCE), Tenengrad function per mean intensity (TFPMI) (1.222 ± 0.241 for ground truth; 0.981 ± 0.213 for Li's model; 1.194 ± 0.223 for PGMGVCE) and variance function per mean intensity (VFPMI) (0.0811 ± 0.005 for ground truth; 0.0667 ± 0.006 for Li's model; 0.0761 ± 0.006 for PGMGVCE). Conclusions: PGMGVCE presents an innovative and safe approach to VCE in MRI, demonstrating the power of deep learning in enhancing medical imaging. This model paves the way for more accurate and risk-free diagnostic tools in medical imaging.

7.
Cells ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534368

RESUMEN

Fracture callus formation is a dynamic stage of bone activity and repair with precise, spatially localized gene expression. Metastatic breast cancer impairs fracture healing by disrupting bone homeostasis and imparting an altered genomic profile. Previous sequencing techniques such as single-cell RNA and in situ hybridization are limited by missing spatial context and low throughput, respectively. We present a preliminary approach using the Visium CytAssist spatial transcriptomics platform to provide the first spatially intact characterization of genetic expression changes within an orthopedic model of impaired fracture healing. Tissue slides prepared from BALB/c mice with or without MDA-MB-231 metastatic breast cancer cells were used. Both unsupervised clustering and histology-based annotations were performed to identify the hard callus, soft callus, and interzone for differential gene expression between the wild-type and pathological fracture model. The spatial transcriptomics platform successfully localized validated genes of the hard (Dmp1, Sost) and soft callus (Acan, Col2a1). The fibrous interzone was identified as a region of extensive genomic heterogeneity. MDA-MB-231 samples demonstrated downregulation of the critical bone matrix and structural regulators that may explain the weakened bone structure of pathological fractures. Spatial transcriptomics may represent a valuable tool in orthopedic research by providing temporal and spatial context.


Asunto(s)
Callo Óseo , Fracturas del Fémur , Ratones , Animales , Callo Óseo/metabolismo , Callo Óseo/patología , Fracturas del Fémur/patología , Curación de Fractura , Perfilación de la Expresión Génica
8.
IEEE J Biomed Health Inform ; 28(1): 100-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37624724

RESUMEN

Recently, deep learning has been demonstrated to be feasible in eliminating the use of gadoliniumbased contrast agents (GBCAs) through synthesizing gadolinium-free contrast-enhanced MRI (GFCE-MRI) from contrast-free MRI sequences, providing the community with an alternative to get rid of GBCAs-associated safety issues in patients. Nevertheless, generalizability assessment of the GFCE-MRI model has been largely challenged by the high inter-institutional heterogeneity of MRI data, on top of the scarcity of multi-institutional data itself. Although various data normalization methods have been adopted to address the heterogeneity issue, it has been limited to single-institutional investigation and there is no standard normalization approach presently. In this study, we aimed at investigating generalizability of GFCE-MRI model using data from seven institutions by manipulating heterogeneity of MRI data under five popular normalization approaches. Three state-of-the-art neural networks were applied to map from T1-weighted and T2-weighted MRI to contrast-enhanced MRI (CE-MRI) for GFCE-MRI synthesis in patients with nasopharyngeal carcinoma. MRI data from three institutions were used separately to generate three uni-institution models and jointly for a tri-institution model. The five normalization methods were applied to normalize the data of each model. MRI data from the remaining four institutions served as external cohorts for model generalizability assessment. Quality of GFCE-MRI was quantitatively evaluated against ground-truth CE-MRI using mean absolute error (MAE) and peak signal-to-noise ratio(PSNR). Results showed that performance of all uni-institution models remarkably dropped on the external cohorts. By contrast, model trained using multi-institutional data with Z-Score normalization yielded the best model generalizability improvement.


Asunto(s)
Gadolinio , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Relación Señal-Ruido
9.
Neuropsychopharmacology ; 49(1): 227-245, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37673965

RESUMEN

Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.


Asunto(s)
Trastornos Mentales , Factores de Crecimiento Nervioso , Humanos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo
10.
Cell Rep ; 43(1): 113595, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117654

RESUMEN

Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gßγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteínas Tirosina Quinasas Receptoras , Transducción de Señal/fisiología , Receptor trkB/metabolismo , Receptores Acoplados a Proteínas G , Plasticidad Neuronal/fisiología
11.
Front Mol Neurosci ; 16: 1305574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106879

RESUMEN

Despite structural similarity with other tumor necrosis factor receptor superfamily (TNFRSF) members, the p75 neurotrophin receptor (p75NTR, TNFR16) mediates pleiotropic biological functions not shared with other TNFRs. The high level of p75NTR expression in the nervous system instead of immune cells, its utilization of co-receptors, and its interaction with soluble dimeric, rather than soluble or cell-tethered trimeric ligands are all characteristics which distinguish it from most other TNFRs. Here, we compare these attributes to other members of the TNFR superfamily. In addition, we describe the recent evolutionary adaptation in B7-1 (CD80), an immunoglobulin (Ig) superfamily member, which allows engagement to neuronally-expressed p75NTR. B7-1-mediated binding to p75NTR occurs in humans and other primates, but not lower mammals due to specific sequence changes that evolved recently in primate B7-1. This discovery highlights an additional mechanism by which p75NTR can respond to inflammatory cues and trigger synaptic elimination in the brain through engagement of B7-1, which was considered to be immune-restricted. These observations suggest p75NTR does share commonality with other immune co-modulatory TNFR family members, by responding to immunoregulatory cues. The evolution of primate B7-1 to bind and elicit p75NTR-mediated effects on neuronal morphology and function are discussed in relationship to immune-driven modulation of synaptic actions during injury or inflammation.

12.
Lancet Reg Health Am ; 28: 100628, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38026447

RESUMEN

Background: Understanding the impact of incarceration on HIV transmission among Black men who have sex with men is important given their disproportionate representation among people experiencing incarceration and the potential impact of incarceration on social and sexual networks, employment, housing, and medical care. We developed an agent-based network model (ABNM) of 10,000 agents representing young Black men who have sex with men in the city of Chicago to examine the impact of varying degrees of post-incarceration care disruption and care engagement interventions following release from jail on HIV incidence. Methods: Exponential random graph models were used to model network formation and dissolution dynamics, and network dynamics and HIV care continuum engagement were varied according to incarceration status. Hypothetical interventions to improve post-release engagement in HIV care for individuals with incarceration (e.g., enhanced case management, linkage to housing and employment services) were compared to a control scenario with no change in HIV care engagement after release. Finding: HIV incidence at 10 years was 4.98 [95% simulation interval (SI): 4.87, 5.09 per 100 person-years (py)] in the model population overall; 5.58 (95% SI 5.38, 5.76 per 100 py) among those with history of incarceration, and 12.86 (95% SI 11.89, 13.73 per 100 py) among partners of agents recently released from incarceration. Sustained post-release HIV care for agents with HIV and experiencing recent incarceration resulted in a 46% reduction in HIV incidence among post-incarceration partners [incidence rate (IR) per 100 py = 5.72 (95% SI 5.19, 6.27) vs. 10.61 (95% SI 10.09, 11.24); incidence rate ratio (IRR) = 0.54; (95% SI 0.48, 0.60)] and a 19% reduction in HIV incidence in the population overall [(IR per 100 py = 3.89 (95% SI 3.81-3.99) vs. 4.83 (95% SI 4.73, 4.92); IRR = 0.81 (95% SI 0.78, 0.83)] compared to a scenario with no change in HIV care engagement from pre-to post-release. Interpretation: Developing effective and scalable interventions to increase HIV care engagement among individuals experiencing recent incarceration and their sexual partners is needed to reduce HIV transmission among Black men who have sex with men. Funding: This work was supported by the following grants from the National Institutes of Health: R01DA039934; P20 GM 130414; P30 AI 042853; P30MH058107; T32 DA 043469; U2C DA050098 and the California HIV/AIDS Research Program: OS17-LA-003; H21PC3466.

13.
Front Cell Infect Microbiol ; 13: 1230568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829606

RESUMEN

Introduction: Diabetes mellitus (DM) impairs fracture healing and is associated with susceptibility to infection, which further inhibits fracture healing. While intermittent parathyroid hormone (1-34) (iPTH) effectively improves fracture healing, it is unknown whether infection-associated impaired fracture healing can be rescued with PTH (teriparatide). Methods: A chronic diet-induced type 2 diabetic mouse model was used to yield mice with decreased glucose tolerance and increased blood glucose levels compared to lean-fed controls. Methicillin-resistant Staphylococcus aureus (MRSA) was inoculated in a surgical tibia fracture model to simulate infected fracture, after which mice were treated with a combination of antibiotics and adjunctive teriparatide treatment. Fracture healing was assessed by Radiographic Union Scale in Tibial Fractures (RUST), micro-computed tomography (µCT), biomechanical testing, and histology. Results: RUST score was significantly poorer in diabetic mice compared to their lean nondiabetic counterparts. There were concomitant reductions in micro-computed tomography (µCT) parameters of callus architecture including bone volume/total volume, trabecular thickness, and total mineral density in type 2 diabetes mellitus (T2DM) mice. Biomechanicaltesting of fractured femora demonstrated diminished torsional rigidity, stiffness, and toughness to max torque. Adjuvant teriparatide treatment with systemic antibiotic therapy improved numerous parameters of bone microarchitecture bone volume, increased connectivity density, and increased trabecular number in both the lean and T2DM group. Despite the observation that poor fracture healing in T2DM mice was further impaired by MRSA infection, adjuvant iPTH treatment significantly improved fracture healing compared to antibiotic treatment alone in infected T2DM fractures. Discussion: Our results suggest that teriparatide may constitute a viable adjuvant therapeutic agent to improve bony union and bone microarchitecture to prevent the development of septic nonunion under diabetic conditions.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Curación de Fractura , Teriparatido/uso terapéutico , Teriparatido/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Microtomografía por Rayos X , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico
14.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693535

RESUMEN

Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gßγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.

15.
Physiol Behav ; 271: 114336, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619817

RESUMEN

Extinction learning is tremendously adaptive as it allows an animal to adjust their behavior in a changing environment. Yet, extinction is not without limitations and fear often reemerges over time (i.e. spontaneous recovery). Relative to adults, adolescent rodents and humans are particularly prone to spontaneous recovery following extinction. In this study, we aimed to address whether combining methods of fear regulation (extinction and conditioned inhibition) can facilitate extinction retention. Early adolescent (29 days old, n = 81) and adult (70 days old, n = 80) mice underwent extinction with or without a safety cue present. Safety cue presentations were systematically varied to overlap with or alternate with fear cue presentations. We found that initial safety learning was faster in adolescent mice. In addition, intermixing safety cues into extinction reduced spontaneous recovery during a test two weeks later. The decrease in spontaneous recovery relative to a standard extinction protocol was greater in adolescents than adults. Together, our findings provide initial evidence that safety learning may be inherently stronger during adolescence. These results inform the parameters by which conditioned safety and extinction learning may be merged to augment the inhibition of fear. While methods to enhance fear regulation are valuable for any age, the potential to do so during adolescence is particularly striking.


Asunto(s)
Señales (Psicología) , Extinción Psicológica , Adulto , Adolescente , Humanos , Ratones , Animales , Extinción Psicológica/fisiología , Condicionamiento Psicológico/fisiología , Condicionamiento Clásico/fisiología , Aprendizaje
16.
Mol Psychiatry ; 28(8): 3171-3181, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37580524

RESUMEN

Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.


Asunto(s)
Trastornos Mentales , Salud Mental , Humanos , Adolescente , Trastornos Mentales/terapia , Trastornos Mentales/diagnóstico , Psicopatología
17.
Am J Psychiatry ; 180(8): 540-547, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37525605

RESUMEN

The transition from childhood to adulthood represents the developmental time frame in which the majority of psychiatric disorders emerge. Recent efforts to identify risk factors mediating the susceptibility to psychopathology have led to a heightened focus on both typical and atypical trajectories of neural circuit maturation. Mounting evidence has highlighted the immense neural plasticity apparent in the developing brain. Although in many cases adaptive, the capacity for neural circuit alteration also induces a state of vulnerability to environmental perturbations, such that early-life experiences have long-lasting implications for cognitive and emotional functioning in adulthood. The authors outline preclinical and neuroimaging studies of normative human brain circuit development, as well as parallel efforts covered in this issue of the Journal, to identify brain circuit alterations in psychiatric disorders that frequently emerge in developing populations. Continued translational research into the interactive effects of neurobiological development and external factors will be crucial for identifying early-life risk factors that may contribute to the emergence of psychiatric illness and provide the key to optimizing treatments.


Asunto(s)
Trastornos Mentales , Neurociencias , Humanos , Niño , Adolescente , Adulto Joven , Trastornos Mentales/etiología , Psicopatología , Encéfalo/diagnóstico por imagen , Emociones
18.
Dev Psychobiol ; 65(6): e22409, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37607892

RESUMEN

Anxiety disorders are more prevalent in females than in males, yet a majority of basic neuroscience studies are performed in males. Furthermore, anxiety disorders peak in prevalence during adolescence, yet little is known about neurodevelopmental trajectories of fear expression, particularly in females. To examine these factors, we fear conditioned juvenile, adolescent, and adult female mice and exposed them to fear extinction and a long-term recall test. For this, we used knock-in mice containing a common human mutation in the gene for fatty acid amide hydrolase (FAAH), the primary catabolic enzyme for the endocannabinoid anandamide (FAAH-IN). This mutation has been shown to impart a low-anxiety phenotype in humans, and in rodents relative to their wild-type littermates. We find an impact of the FAAH polymorphism on developmental changes in fear behavior. Specifically, the FAAH polymorphism appears to induce a state of hypervigilance (increased fear) during adolescence. We also used markerless pose estimation software to classify alternative behaviors outside of freezing. These analyses revealed age differences in vigilance to indicators of threat and in the propensity of mice to explore an aversive environment, though genotypic differences were minimal. These findings address a gap in the literature regarding developmental patterns of fear learning and memory as well as the mechanistic contributions of the endocannabinoid system in females.


Asunto(s)
Endocannabinoides , Miedo , Animales , Femenino , Humanos , Masculino , Ratones , Extinción Psicológica , Polimorfismo Genético
19.
J Clin Med ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37510728

RESUMEN

BACKGROUND: The success of orthopedic interventions for periacetabular osteolytic metastases depends on the progression or regression of cancer-induced bone loss. PURPOSE: To characterize relative bone mass changes following percutaneous radiofrequency ablation, osteoplasty, cement reinforcement, and internal screw fixation (AORIF). METHODS: Of 70 patients who underwent AORIF at a single institution, 21 patients (22 periacetabular sites; average follow-up of 18.5 ± 12.3 months) had high-resolution pelvic bone CT scans, with at least one scan within 3 months following their operation (baseline) and a comparative scan at least 6 months post-operatively. In total, 73 CT scans were measured for bone mass changes using Hounsfield Units (HU). A region of interest was defined for the periacetabular area in the coronal, axial, and sagittal reformation planes for all CT scans. For 6-month and 1-year scans, the coronal and sagittal HU were combined to create a weight-bearing HU (wbHU). Three-dimensional volumetric analysis was performed on the baseline and longest available CT scans. Cohort survival was compared to predicted PathFx 3.0 survival. RESULTS: HU increased from baseline post-operative (1.2 ± 1.1 months) to most recent follow-up (20.2 ± 12.1 months) on coronal (124.0 ± 112.3), axial (140.3 ± 153.0), and sagittal (151.9 ± 162.4), p < 0.05. Grayscale volumetric measurements increased by 173.4 ± 166.4 (p < 0.05). AORIF median survival was 27.7 months (6.0 months PathFx3.0 predicted; p < 0.05). At 12 months, patients with >10% increase in wbHU demonstrated superior median survival of 36.5 months (vs. 26.4 months, p < 0.05). CONCLUSION: Percutaneous stabilization leads to improvements in bone mass and may allow for delays in extensive open reconstruction procedures.

20.
Front Cell Infect Microbiol ; 13: 1198115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434783

RESUMEN

Introduction: Infection in diabetic foot ulcers (DFUs) is one of the major complications associated with patients with diabetes. Staphylococcus aureus is the most common offending pathogen in patients with infected DFU. Previous studies have suggested the application of species-specific antibodies against S. aureus for diagnosis and monitoring treatment response. Early and accurate identification of the main pathogen is critical for management of DFU infection. Understanding the host immune response against species-specific infection may facilitate diagnosis and may suggest potential intervention options to promote healing infected DFUs. We sought to investigate evolving host transcriptome associated with surgical treatment of S. aureus- infected DFU. Methods: This study compared the transcriptome profile of 21 patients with S. aureus- infected DFU who underwent initial foot salvage therapy with irrigation and debridement followed by intravenous antibiotic therapy. Blood samples were collected at the recruitment (0 weeks) and 8 weeks after therapy to isolate peripheral blood mononuclear cells (PBMCs). We analyzed the PBMC expression of transcriptomes at two different time points (0 versus 8 weeks). Subjects were further divided into two groups at 8 weeks: healed (n = 17, 80.95%) versus non-healed (n = 4, 19.05%) based on the wound healing status. DESeq2 differential gene analysis was performed. Results and discussion: An increased expression of IGHG1, IGHG2, IGHG3, IGLV3-21, and IGLV6-57 was noted during active infection at 0 weeks compared with that at 8 weeks. Lysine- and arginine-rich histones (HIST1H2AJ, HIST1H2AL, HIST1H2BM, HIST1H3B, and HIST1H3G) were upregulated at the initial phase of active infection at 0 weeks. CD177 and RRM2 were also upregulated at the initial phase of active infection (0 weeks) compared with that at 8 weeks of follow-up. Genes of heat shock protein members (HSPA1A, HSPE1, and HSP90B1) were high in not healed patients compared with that in healed patients 8 weeks after therapy. The outcome of our study suggests that the identification of genes evolution based on a transcriptomic profiling could be a useful tool for diagnosing infection and assessing severity and host immune response to therapies.


Asunto(s)
Enfermedades Transmisibles , Diabetes Mellitus , Pie Diabético , Staphylococcus aureus Resistente a Meticilina , Humanos , Transcriptoma , Pie Diabético/genética , Leucocitos Mononucleares , Staphylococcus aureus , Histonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...