Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1248276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699144

RESUMEN

Introduction: It may take decades to develop cardiovascular dysfunction following exposure to high doses of ionizing radiation from medical therapy or from nuclear accidents. Since astronauts may be exposed continually to a complex space radiation environment unlike that experienced on Earth, it is unresolved whether there is a risk to cardiovascular health during long-term space exploration missions. Previously, we have described that mice exposed to a single dose of simplified Galactic Cosmic Ray (GCR5-ion) develop cardiovascular dysfunction by 12 months post-radiation. Methods: To investigate the biological basis of this dysfunction, here we performed a quantitative mass spectrometry-based proteomics analysis of heart tissue (proteome and phosphoproteome) and plasma (proteome only) from these mice at 8 months post-radiation. Results: Differentially expressed proteins (DEPs) for irradiated versus sham irradiated samples (fold-change ≥1.2 and an adjusted p-value of ≤0.05) were identified for each proteomics data set. For the heart proteome, there were 87 significant DEPs (11 upregulated and 76 downregulated); for the heart phosphoproteome, there were 60 significant differentially phosphorylated peptides (17 upregulated and 43 downregulated); and for the plasma proteome, there was only one upregulated protein. A Gene Set Enrichment Analysis (GSEA) technique that assesses canonical pathways from BIOCARTA, KEGG, PID, REACTOME, and WikiPathways revealed significant perturbation in pathways in each data set. For the heart proteome, 166 pathways were significantly altered (36 upregulated and 130 downregulated); for the plasma proteome, there were 73 pathways significantly altered (25 upregulated and 48 downregulated); and for the phosphoproteome, there were 223 pathways significantly affected at 0.1 adjusted p-value cutoff. Pathways related to inflammation were the most highly perturbed in the heart and plasma. In line with sustained inflammation, neutrophil extracellular traps (NETs) were demonstrated to be increased in GCR5-ion irradiated hearts at 12-month post irradiation. NETs play a fundamental role in combating bacterial pathogens, modulating inflammatory responses, inflicting damage on healthy tissues, and escalating vascular thrombosis. Discussion: These findings suggest that a single exposure to GCR5-ion results in long-lasting changes in the proteome and that these proteomic changes can potentiate acute and chronic health issues for astronauts, such as what we have previously described with late cardiac dysfunction in these mice.

2.
Front Cardiovasc Med ; 10: 1216917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408655

RESUMEN

Background: Reliable biomarkers for assessing the viability of the donor hearts undergoing ex vivo perfusion remain elusive. A unique feature of normothermic ex vivo perfusion on the TransMedics® Organ Care System (OCS™) is that the donor heart is maintained in a beating state throughout the preservation period. We applied a video algorithm for an in vivo assessment of cardiac kinematics, video kinematic evaluation (Vi.Ki.E.), to the donor hearts undergoing ex vivo perfusion on the OCS™ to assess the feasibility of applying this algorithm in this setting. Methods: Healthy donor porcine hearts (n = 6) were procured from Yucatan pigs and underwent 2 h of normothermic ex vivo perfusion on the OCS™ device. During the preservation period, serial high-resolution videos were captured at 30 frames per second. Using Vi.Ki.E., we assessed the force, energy, contractility, and trajectory parameters of each heart. Results: There were no significant changes in any of the measured parameters of the heart on the OCS™ device over time as judged by linear regression analysis. Importantly, there were no significant changes in contractility during the duration of the preservation period (time 0-30 min, 918 ± 430 px/s; time 31-60 min, 1,386 ± 603 px/s; time 61-90 min, 1,299 ± 617 px/s; time 91-120 min, 1,535 ± 728 px/s). Similarly, there were no significant changes in the force, energy, or trajectory parameters. Post-transplantation echocardiograms demonstrated robust contractility of each allograft. Conclusion: Vi.Ki.E. assessment of the donor hearts undergoing ex vivo perfusion is feasible on the TransMedics OCS™, and we observed that the donor hearts maintain steady kinematic measurements throughout the duration.

3.
Hum Gene Ther ; 34(7-8): 303-313, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927038

RESUMEN

Transplantation, the gold standard intervention for organ failure, is a clinical field that is ripe for applications of gene therapy. One of the major challenges in applying gene therapy to this field is the need for a method that achieves consistent and robust gene delivery to allografts. Normothermic ex vivo perfusion is a growing organ preservation method and a device for cardiac preservation was recently approved by the Food and Drug Administration (FDA) (Organ Care System, OCS™; TransMedics, Inc., Andover, MA); this device maintains donor hearts in a near physiologic state while they are transported from the donor to the recipient. This study describes the administration of recombinant adeno-associated viral vectors (rAAVs) during ex vivo normothermic perfusion for the delivery of transgenes to porcine cardiac allografts. We utilized a myocardial-enhanced AAV3b variant, SASTG, assessing its transduction efficiency in the OCS perfusate relative to other AAV serotypes. We describe the use of normothermic ex vivo perfusion to deliver SASTG carrying the Firefly Luciferase transgene to porcine donor hearts in four heterotopic transplant procedures. Durable and dose-dependent transgene expression was achieved in the allografts in 30 days, with no evidence of off-target transgene expression. This study demonstrates the feasibility and efficiency of delivering genes to a large animal allograft utilizing AAV vectors during ex vivo perfusion. These findings support the idea of gene therapy interventions to enhance transplantation outcomes.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Humanos , Trasplante de Corazón/métodos , Perfusión/métodos , Donantes de Tejidos , Terapia Genética/métodos , Aloinjertos
4.
J Cardiovasc Transl Res ; 16(3): 748-750, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36344902

RESUMEN

The porcine intra-abdominal heterotopic heart transplantation model allows for the assessment of immunologic effects on cardiac transplantation without relying on the allograft to maintain hemodynamic support for the animal. Historically, allograft function and histology is monitored by physical exam, echocardiogram evaluation, percutaneous core biopsy, and open biopsy. We performed transvenous endomyocardial biopsies in three pigs that had undergone heterotopic heart implantation. We describe the procedure to be feasible and reproducible, and that histologic results from these biopsies correlated with those from corresponding tissue collected by surgical dissection at the time of allograft explantation. The ability to perform endomyocardial biopsies in the heterotopic heart transplantation model allows for serial non-invasive monitoring of allograft histology.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Humanos , Trasplante de Corazón/efectos adversos , Miocardio/patología , Donantes de Tejidos , Corazón , Biopsia/métodos , Rechazo de Injerto
5.
iScience ; 25(4): 104086, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378858

RESUMEN

The complex and inaccessible space radiation environment poses an unresolved risk to astronaut cardiovascular health during long-term space exploration missions. To model this risk, healthy male c57BL/6 mice aged six months (corresponding to an astronaut of 34 years) were exposed to simplified galactic cosmic ray (GCR5-ion; 5-ion sim) irradiation at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories (BNL). Multi-modal cardiovascular functional assessments performed longitudinally and terminally revealed significant impairment in cardiac function in mice exposed to GCR5-ion compared to unirradiated controls, gamma irradiation, or single mono-energetic ions (56Fe or 16O). GCR5-ion-treated mice exhibited increased arterial elastance likely mediated by disruption of elastin fibers. This study suggests that a single exposure to GCR5-ion is associated with deterioration in cardiac structure and function that becomes apparent long after exposure, likely associated with increased morbidity and mortality. These findings represent important health considerations when preparing for successful space exploration.

6.
J Vis Exp ; (180)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35225284

RESUMEN

Cardiac transplantation is the gold standard treatment for end-stage heart failure. However, it remains limited by the number of available donor hearts and complications such as primary graft dysfunction and graft rejection. The recent clinical use of an ex vivo perfusion device in cardiac transplantation introduces a unique opportunity for treating cardiac allografts with therapeutic interventions to improve function and avoid deleterious recipient responses. Establishing a translational, large-animal model for therapeutic delivery to the entire allograft is essential for testing novel therapeutic approaches in cardiac transplantation. The porcine, heterotopic heart transplantation model in the intraabdominal position serves as an excellent model for assessing the effects of novel interventions and the immunopathology of graft rejection. This model additionally offers long-term survival for the pig, given that the graft is not required to maintain the recipient's circulation. The aim of this protocol is to provide a reproducible and robust approach for achieving ex vivo delivery of a therapeutic to the entire cardiac allograft prior to transplantation and provide technical details to perform a survival heterotopic transplant of the ex vivo perfused heart.


Asunto(s)
Trasplante de Corazón , Aloinjertos , Animales , Rechazo de Injerto , Supervivencia de Injerto , Trasplante de Corazón/métodos , Humanos , Porcinos , Donantes de Tejidos , Trasplante Heterotópico
7.
Sci Rep ; 9(1): 8029, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142753

RESUMEN

Clinically, both percutaneous and surgical approaches to deliver viral vectors to the heart either have resulted in therapeutically inadequate levels of transgene expression or have raised safety concerns associated with extra-cardiac delivery. Recent developments in the field of normothermic ex vivo cardiac perfusion storage have now created opportunities to overcome these limitations and safety concerns of cardiac gene therapy. This study examined the feasibility of ex vivo perfusion as an approach to deliver a viral vector to a donor heart during storage and the resulting bio distribution and expression levels of the transgene in the recipient post-transplant. The influence of components (proprietary solution, donor blood, and ex vivo circuitry tubing and oxygenators) of the Organ Care System (OC) (TransMedics, Inc., Andover MA) on viral vector transduction was examined using a cell-based luciferase assay. Our ex vivo perfusion strategy, optimized for efficient Adenoviral vector transduction, was utilized to deliver 5 × 1013 total viral particles of an Adenoviral firefly luciferase vector with a cytomegalovirus (CMV) promotor to porcine donor hearts prior to heterotopic implantation. We have evaluated the overall levels of expression, protein activity, as well as the bio distribution of the firefly luciferase protein in a series of three heart transplants at a five-day post-transplant endpoint. The perfusion solution and the ex vivo circuitry did not influence viral vector transduction, but the serum or plasma fractions of the donor blood significantly inhibited viral vector transduction. Thus, subsequent gene delivery experiments to the explanted porcine heart utilized an autologous blood recovery approach to remove undesired plasma or serum components of the donor blood prior to its placement into the circuit. Enzymatic assessment of luciferase activity in tissues (native heart, allograft, liver etc.) obtained post-transplant day five revealed wide-spread and robust luciferase activity in all regions of the allograft (right and left atria, right and left ventricles, coronary arteries) compared to the native recipient heart. Importantly, luciferase activity in recipient heart, liver, lung, spleen, or psoas muscle was within background levels. Similar to luciferase activity, the luciferase protein expression in the allograft appeared uniform and robust across all areas of the myocardium as well as in the coronary arteries. Importantly, despite high copy number of vector genomic DNA in transplanted heart tissue, there was no evidence of vector DNA in either the recipient's native heart or liver. Overall we demonstrate a simple protocol to achieve substantial, global gene delivery and expression isolated to the cardiac allograft. This introduces a novel method of viral vector delivery that opens the opportunity for biological modification of the allograft prior to implantation that may improve post-transplant outcomes.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Trasplante de Corazón/métodos , Perfusión/métodos , Adenoviridae/genética , Aloinjertos/química , Animales , Estudios de Factibilidad , Femenino , Genes Reporteros/genética , Vectores Genéticos/genética , Insuficiencia Cardíaca/genética , Humanos , Hígado/química , Luciferasas/análisis , Luciferasas/genética , Modelos Animales , Miocardio/química , Preservación de Órganos/métodos , Soluciones Preservantes de Órganos/química , Sus scrofa , Trasplante Homólogo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...