Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
medRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38343837

RESUMEN

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe post-acute sequela of SARS-CoV-2 infection. The highly diverse clinical features of MIS-C necessities characterizing its features by subphenotypes for improved recognition and treatment. However, jointly identifying subphenotypes in multi-site settings can be challenging. We propose a distributed multi-site latent class analysis (dMLCA) approach to jointly learn MIS-C subphenotypes using data across multiple institutions. Methods: We used data from the electronic health records (EHR) systems across nine U.S. children's hospitals. Among the 3,549,894 patients, we extracted 864 patients < 21 years of age who had received a diagnosis of MIS-C during an inpatient stay or up to one day before admission. Using MIS-C conditions, laboratory results, and procedure information as input features for the patients, we applied our dMLCA algorithm and identified three MIS-C subphenotypes. As validation, we characterized and compared more granular features across subphenotypes. To evaluate the specificity of the identified subphenotypes, we further compared them with the general subphenotypes identified in the COVID-19 infected patients. Findings: Subphenotype 1 (46.1%) represents patients with a mild manifestation of MIS-C not requiring intensive care, with minimal cardiac involvement. Subphenotype 2 (25.3%) is associated with a high risk of shock, cardiac and renal involvement, and an intermediate risk of respiratory symptoms. Subphenotype 3 (28.6%) represents patients requiring intensive care, with a high risk of shock and cardiac involvement, accompanied by a high risk of >4 organ system being impacted. Importantly, for hospital-specific clinical decision-making, our algorithm also revealed a substantial heterogeneity in relative proportions of these three subtypes across hospitals. Properly accounting for such heterogeneity can lead to accurate characterization of the subphenotypes at the patient-level. Interpretation: Our identified three MIS-C subphenotypes have profound implications for personalized treatment strategies, potentially influencing clinical outcomes. Further, the proposed algorithm facilitates federated subphenotyping while accounting for the heterogeneity across hospitals.

2.
J Pediatr ; 257: 113358, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36822507

RESUMEN

Using an electronic health record-based algorithm, we identified children with Coronavirus disease 2019 (COVID-19) based exclusively on serologic testing between March 2020 and April 2022. Compared with the 131 537 polymerase chain reaction-positive children, the 2714 serology-positive children were more likely to be inpatients (24% vs 2%), to have a chronic condition (37% vs 24%), and to have a diagnosis of multisystem inflammatory syndrome in children (23% vs <1%). Identification of children who could have been asymptomatic or paucisymptomatic and not tested is critical to define the burden of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 infection in children.


Asunto(s)
COVID-19 , Humanos , Niño , COVID-19/complicaciones , COVID-19/diagnóstico , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Estudios de Cohortes , Registros Electrónicos de Salud , Anticuerpos Antivirales , Progresión de la Enfermedad , Prueba de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA