Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 10(1): 15678, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973321

RESUMEN

An understanding of immunological mechanisms in kidney diseases has advanced using mouse kidneys. However, the profiling of immune cell subsets in human kidneys remains undetermined, particularly compared with mouse kidneys. Normal human kidneys were obtained from radically nephrectomised patients with urogenital malignancy (n = 15). Subsequently, human kidney immune cell subsets were analysed using multicolor flow cytometry and compared with subsets from C57BL/6 or BALB/c mice under specific pathogen-free conditions. Twenty kidney sections from healthy kidney donors or subjects without specific renal lesions were additionally analysed by immunohistochemistry. In human kidneys, 47% ± 12% (maximum 63%) of immune cells were CD3+ T cells. Kidney CD4+ and CD8+ T cells comprised 44% and 56% of total T cells. Of these, 47% ± 15% of T cells displayed an effector memory phenotype (CCR7- CD45RA- CD69-), and 48% ± 19% were kidney-resident cells (CCR7- CD45RA- CD69+). However, the proportions of human CD14+ and CD16+ myeloid cells were approximately 10% of total immune cells. A predominance of CD3+ T cells and a low proportion of CD14+ or CD68+ myeloid cells were also identified in healthy human kidney sections. In mouse kidneys, kidney-resident macrophages (CD11blow F4/80high) were the most predominant subset (up to 50%) but the proportion of CD3+ T cells was less than 20%. These results will be of use in studies in which mouse results are translated into human cases under homeostatic conditions or with disease.


Asunto(s)
Inmunidad , Riñón/inmunología , Animales , Femenino , Humanos , Inmunofenotipificación , Masculino , Ratones , Coloración y Etiquetado
3.
Immune Netw ; 20(2): e18, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32395370

RESUMEN

Type 2 diabetic nephropathy (T2DN) progresses with an increasingly inflammatory milieu, wherein various immune cells are relevant. Herein, we investigated the levels of myeloid-derived suppressor cells (MDSCs) and their clinical implication in patients with T2DN. A total of 91 subjects (T2DN, n=80; healthy, n=11) were recruited and their PBMCs were used for flow cytometric analysis of polymorphonuclear (PMN-) and monocytic (M-) MDSCs, in addition to other immune cell subsets. The risk of renal progression was evaluated according to the quartiles of MDSC levels using the Cox model. The proportion of MDSCs in T2DN patients was higher than in healthy individuals (median, 6.7% vs. 2.5%). PMN-MDSCs accounted for 96% of MDSCs, and 78% of PMN-MDSCs expressed Lox-1. The expansion of PMN-MDSCs was not related to the stage of T2DN or other kidney disease parameters such as glomerular filtration rate and proteinuria. The production of ROS in PMN-MDSCs of patients was higher than in neutrophils of patients or in immune cells of healthy individuals, and this production was augmented under hyperglycemic conditions. The 4th quartile group of PMN-MDSCs had a higher risk of renal progression than the 1st quartile group, irrespective of adjusting for multiple clinical and laboratory variables. In conclusion, PMN-MDSCs are expanded in patients with T2DN, and may represent as an immunological biomarker of renal progression.

4.
Ear Hear ; 41(1): 114-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31045651

RESUMEN

OBJECTIVES: Late-onset, down-sloping sensorineural hearing loss has many genetic and nongenetic etiologies, but the proportion of this commonly encountered type of hearing loss attributable to genetic causes is not well known. In this study, the authors performed genetic analysis using next-generation sequencing techniques in patients showing late-onset, down-sloping sensorineural hearing loss with preserved low-frequency hearing, and investigated the clinical implications of the variants identified. DESIGN: From a cohort of patients with hearing loss at a tertiary referral hospital, 18 unrelated probands with down-sloping sensorineural hearing loss of late onset were included in this study. Down-sloping hearing loss was defined as a mean low-frequency threshold at 250 Hz and 500 Hz less than or equal to 40 dB HL and a mean high-frequency threshold at 1, 2, and 4 kHz greater than 40 dB HL. The authors performed whole-exome sequencing and segregation analysis to identify the genetic causes and evaluated the outcomes of auditory rehabilitation in the patients. RESULTS: There were nine simplex and nine multiplex families included, in which the causative variants were found in six of 18 probands, demonstrating a detection rate of 33.3%. Various types of variants, including five novel and three known variants, were detected in the MYH14, MYH9, USH2A, COL11A2, and TMPRSS3 genes. The outcome of cochlear and middle ear implants in patients identified with pathogenic variants was satisfactory. There was no statistically significant difference between pathogenic variant-positive and pathogenic variant-negative groups in terms of onset age, family history of hearing loss, pure-tone threshold, or speech discrimination scores. CONCLUSIONS: The proportion of patients with late-onset, down-sloping hearing loss identified with potentially causative variants was unexpectedly high. Identification of the causative variants will offer insights on hearing loss progression and prognosis regarding various modes of auditory rehabilitation, as well as possible concomitant syndromic features.


Asunto(s)
Sordera , Audífonos , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Audiometría de Tonos Puros , Umbral Auditivo , Audición , Pérdida Auditiva Sensorineural/genética , Humanos , Proteínas de la Membrana , Proteínas de Neoplasias , Serina Endopeptidasas
5.
Cell Host Microbe ; 25(4): 513-525.e6, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30905438

RESUMEN

In the inner ear, endolymph fluid surrounds the organ of Corti, which is important for auditory function; notably, even slight environmental changes mediated by trauma or infection can have significant consequences. However, it is unclear how the immune response is modulated in these tissues. Here, we report the local immune surveillance role of cleaved cochlin LCCL (Limulus factor C, Cochlin, and Lgl1) during Pseudomonas aeruginosa infection in the cochlea. Upon infection, the LCCL domain is cleaved from cochlin and secreted into the perilymph. This cleaved fragment sequesters infiltrating bacteria in the scala tympani and subsequently recruits resident immune cells to eliminate the bacteria. Importantly, hearing loss in a cochlin knockout mouse model is remedied by treatment with a cochlin LCCL peptide. These findings suggest cleaved cochlin LCCL constitutes a critical factor in innate immunity and auditory function and may be a potential therapeutic target to treat chronic otitis media-induced hearing loss.


Asunto(s)
Oído Interno/inmunología , Oído Interno/microbiología , Proteínas de la Matriz Extracelular/metabolismo , Inmunidad Innata , Laberintitis/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Adhesión Bacteriana , Modelos Animales de Enfermedad , Laberintitis/patología , Ratones , Ratones Noqueados , Infecciones por Pseudomonas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA