Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916850

RESUMEN

BACKGROUND: IA-0130 is a derivative of 3-(1,3-diarylallylidene)oxindoles, which is a selective estrogen receptor modulator (SERM). A previous study demonstrated that SERM exhibits anti-inflammatory effects on colitis by promoting the anti-inflammatory phenotype of monocytes in murine colitis. However, the therapeutic effects of oxindole on colitis remain unknown. Therefore, we evaluated the efficacy of IA-0130 on dextran sulfate sodium (DSS)-induced mouse colitis. METHODS: The DSS-induced colitis mouse model was established by administration of 2.5% DSS for 5 days. Mice were orally administered with IA-0130 (0.01 mg/kg or 0.1 mg/kg) or cyclosporin A (CsA; 30 mg/kg). Body weight, disease activity index score and colon length of mice were calculated and histological features of mouse colonic tissues were analyzed using hematoxylin and eosin staining. The expression of inflammatory cytokines and tight junction (TJ) proteins were analyzed using quantitative real-time PCR and enzyme-linked immunosorbent assay. The expression of interleukin-6 (IL-6) signaling molecules in colonic tissues were investigated using Western blotting and immunohistochemistry (IHC). RESULTS: IA-0130 (0.1 mg/kg) and CsA (30 mg/kg) prevented colitis symptom, including weight loss, bleeding, colon shortening, and expression of pro-inflammatory cytokines in colon tissues. IA-0130 treatment regulated the mouse intestinal barrier permeability and inhibited abnormal TJ protein expression. IA-0130 down-regulated IL-6 expression and prevented the phosphorylation of signaling molecules in colonic tissues. CONCLUSIONS: This study demonstrated that IA-0130 suppressed colitis progression by inhibiting the gp130 signaling pathway and expression of pro-inflammatory cytokines, and maintaining TJ integrity.

2.
Dalton Trans ; 53(23): 9692-9699, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766972

RESUMEN

Self-assembly of M(ClO4)2 (M(II) = Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)) with dicyclopentyldi(pyridine-3-yl)silane (L) as a donor in a mixture of acetonitrile and toluene produces crystals consisting of M6L12 double-stranded macrocycles. The geometry around the M(II) cations is a typical octahedral arrangement, but the metallamacrocycles' outer axial coordination environment is sensitive to the M(II) cations. The conformation of the unique metallamacrocycles is informatively dependent on the nature of the coordination around the M(II) cations via subtle co-ligand competition among perchlorate anions, water, and acetonitrile. Both the coordinated acetonitriles and the solvate molecules of the crystals are removed at 170 °C, thereby transforming the crystals into new crystals that return to their original form in the mixture of toluene and acetonitrile. Catalytic oxidation of 3,5-di-tert-butylcatechol using [Cu6(ClO4)8(CH3CN)4L12]4ClO4·5C7H8 is much faster than those using the transformed product, [Cu(ClO4)2L2], and a simple mixture of Cu(ClO4)2 + L.

3.
Angew Chem Int Ed Engl ; 63(24): e202404682, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38573026

RESUMEN

While metal-mediated self-assembly is a popular technique to construct discrete nanosized objects, highly symmetric structures, built from one type of ligand at a time, are dominating reported systems. The tailored integration of a set of different ligands requires sophisticated approaches to avoid narcissistic separation or formation of statistical mixtures. Here, we demonstrate how the combination of three structure-guiding effects (metal-templated macrocyclization, additional bridging ligands and shape-complementarity) based on Co(III)salphen metal nodes allows for a rational and high-yielding synthesis of structurally complex, lantern-shaped cages with up to four differentiable bridges. Three new heteroleptic coordination cages based on dinuclear Co(III)salphen macrocycles were synthesized in a one-pot reaction approach and fully characterized, including single crystal X-ray analyses. One cage groups two of the same ligands, another two different ligands around a symmetric Co2-bis-salphen ring. In the most complex structure, this ring is unsymmetric, rendering all four connections between the two metal centers distinguishable. While heteroleptic assembly around Pd(II) nodes has been shown to be dynamic, beneficial for cage-to-cage transformations, assembly cascades and adaptive systems, the herein introduced cages based on kinetically more inert Co(III)salphen will be advantageous for applications in enzyme-like catalysis and molecular machinery that require enhanced structural and chemical stability.

4.
J Agric Food Chem ; 72(14): 7882-7893, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530797

RESUMEN

IL-1ß is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1ß-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1ß-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1ß and IL-1R by directly binding to IL-1ß and inhibited the IL-1ß activity. It suppressed IL-1ß-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1ß-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1ß activity and anticolitis effect by hindering the IL-1ß and IL-1R interaction and may be a promising therapeutic anti-IL-1ß agent for IBD treatment.


Asunto(s)
Colitis , Glucósidos , Taninos Hidrolizables , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Células CACO-2 , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo
5.
Mol Neurobiol ; 61(3): 1687-1703, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37755583

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation under investigation for treatment of a wide range of neurological disorders. In particular, the therapeutic application of rTMS for neurodegenerative diseases such as Alzheimer's disease (AD) is attracting attention. However, the mechanisms underlying the therapeutic efficacy of rTMS have not yet been elucidated, and few studies have systematically analyzed the stimulation parameters. In this study, we found that treatment with rTMS contributed to restoration of memory deficits by activating genes involved in synaptic plasticity and long-term memory. We evaluated changes in several intracellular signaling pathways in response to rTMS stimulation; rTMS treatment activated STAT, MAPK, Akt/p70S6K, and CREB signaling. We also systematically investigated the influence of rTMS parameters. We found an effective range of applications for rTMS and determined the optimal combination to achieve the highest efficiency. Moreover, application of rTMS inhibited the increase in cell death induced by hydrogen peroxide. These results suggest that rTMS treatment exerts a neuroprotective effect on cellular damage induced by oxidative stress, which plays an important role in the pathogenesis of neurological disorders. rTMS treatment attenuated streptozotocin (STZ)-mediated cell death and AD-like pathology in neuronal cells. In an animal model of sporadic AD caused by intracerebroventricular STZ injection, rTMS application improved cognitive decline and showed neuroprotective effects on hippocampal histology. Overall, this study will help in the design of stimulation protocols for rTMS application and presents a novel mechanism that may explain the therapeutic effects of rTMS in neurodegenerative diseases, including AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Estimulación Magnética Transcraneal/métodos , Enfermedad de Alzheimer/metabolismo , Estreptozocina , Hipocampo/metabolismo
6.
Inorg Chem ; 62(42): 17057-17061, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37823553

RESUMEN

Informative similarities/differences between self-assembled and single-crystal-to-single-crystal (SCSC) guest-exchanged crystals based on both the molecular structure and adsorption nature are observed. The self-assembly of Ni(ClO4)2 with a dicyclopentyldi(pyridine-3-yl)silane bidentate ligand (L) in a mixture of toluene and acetonitrile gives rise to purple crystals consisting of double-stranded ellipsoidal tubes, [Ni6(ClO4)4(CH3CN)8L12]·8ClO4·4CH3CN·5C7H8. The coordinated acetonitriles as well as the solvates are removed at 170 °C to transform the purple crystals into blue crystals of [Ni(ClO4)2L2]n that return to the original crystals in the mixture of toluene and acetonitrile. Further, the toluene and acetonitrile solvates of the original crystals are replaced by o-, m-, and p-xylene isomers within 5 min in a SCSC manner. In the present study, SCSC xylene-exchanged crystals were compared with crystals obtained from direct self-assembly in a mixture of each xylene isomer and acetonitrile.

7.
J Ethnopharmacol ; 317: 116851, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37385574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Allium cepa L. (A. cepa) is one of the oldest cultivated plants in the world. A. cepa has been used in traditional folk medicine to treat inflammatory disease in several regions, such as Palestine and Serbia. A. cepa peel has a higher content of flavonoids, such as quercetin, than the edible parts. These flavonoids alleviate inflammatory diseases. However, the anti-inflammatory effects of A. cepa peel extract-obtained using various extraction methods-and their underlying mechanisms require further investigation. AIM OF THE STUDY: Although research to find safe anti-inflammatory substances in various natural products has been actively conducted for many years, it is important to continue identifying potential anti-inflammatory effects in natural materials. The purpose of this study was to investigate the ethnopharmacological properties of the A. cepa peel extract, whose efficacy when obtained through different extraction methods and underlying action mechanisms is not well known. The present study specifically aimed to observe the anti-inflammatory effects of the A. cepa peel extracts obtained using various extraction methods and the related detailed mechanisms of A. cepa peel extracts in lipopolysaccharide (LPS)-induced RAW264.7 cells. MATERIALS AND METHODS: The total flavonoid content of the A. cepa peel extracts was determined the diethylene glycol colorimetric method and measured using a calibration curve prepared using quercetin as a standard solution. The antioxidant activity was evaluated using the ABTS assay, and cytotoxicity was measured using the MTT assay. NO production was measured using Griess reagent. Protein levels were measured by western blotting, and mRNA expression was measured by RT-qPCR. Secreted cytokines were analyzed using ELISA or cytokine arrays. In the GSE160086 dataset, we calculated Z-scores for individual genes of interest and displayed using a heat map. RESULTS: Of the three A. cepa peel extracts obtained using different extraction methods, the A. cepa peel 50% EtOH extract (AP50E) was the most effective at inhibiting LPS-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Furthermore, AP50E significantly reduced the levels of pro-inflammation cytokines interleukin (IL)-1α, IL-1ß, IL-6, and IL-27. Additionally, AP50E directly inhibited the Janus kinase-signaling transducer and activator of transcription (JAK-STAT) pathway. CONCLUSIONS: These results showed that AP50E exhibited an anti-inflammatory effect in LPS-induced RAW264.7 mouse macrophages by directly inhibiting JAK-STAT signaling. Based on these findings, we propose AP50E as a potential candidate for the development of preventive or therapeutic agents against inflammatory diseases.


Asunto(s)
Quinasas Janus , Transducción de Señal , Animales , Ratones , Quinasas Janus/metabolismo , Lipopolisacáridos/farmacología , Cebollas , Macrófagos , Quercetina/farmacología , Quercetina/metabolismo , Factores de Transcripción STAT/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Citocinas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Óxido Nítrico/metabolismo
8.
J Ethnopharmacol ; 313: 116598, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146844

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chamaecyparis obtusa (C. obtusa, cypress species) is a plant that grows mainly in the temperate Northern Hemisphere and has long been used as a traditional anti-inflammatory treatment in East Asia. C. obtusa contains phytoncides, flavonoids, and terpenes, which have excellent anti-cancer effects and have been reported to prevent the progression of various cancers. However, the detailed mechanisms underlying the anti-cancer effects of C. obtusa extracts are unknown. AIM OF THE STUDY: We sought to confirm the anti-cancer effects of C. obtusa leaf extracts and to reveal the mechanism of action, with the possibility of its application in the treatment or prevention of cancer. MATERIAL &METHODS: The cytotoxicity of C. obtusa leaf extracts was confirmed using an MTT assay. Intracellular changes in protein levels were measured by immunoblotting, and mRNA levels were measured with qRT-PCR. Wound healing assay and transwell migration assay were used to evaluate the metastatic potential of breast cancer cells. The extract-induced apoptosis was observed using IncuCyte Annexin V Red staining analysis. A syngeneic breast cancer mouse model was established by injecting 4T1-Luc mouse breast cancer cells into the fat pad of female BALB/c mice, and the extract was administered orally. Luciferin solution was injected intraperitoneally to assess primary tumor development and metastasis by bioluminescence. RESULTS: C. obtusa leaf extracts were extracted with boiling water, 70% EtOH, and 99% EtOH. Among the extracts, the 99% EtOH extract of C. obtusa leaf (CO99EL) most clearly inhibited the tyrosine phosphorylation of Signal Transducer and Activator of Transcription 3 (pY-STAT3) in MDA-MB-231 breast cancer cells at a concentration of 25 and 50 µg/mL. In addition, CO99EL strongly inhibited not only endogenous pY-STAT3 levels but also IL-6-induced STAT3 activation in various types of cancer cells, including breast cancer. CO99EL inhibited metastatic potential by downregulating the expression of N-cadherin, fibronectin, TWIST, MMP2, and MMP9 in MDA-MB-231 breast cancer cells. CO99EL also induced apoptotic cell death by increasing cleaved caspase-3 and decreasing anti-apoptotic proteins Bcl-2 and Bcl-xL. In an in vivo syngeneic breast cancer mouse model, 100 mg/kg CO99EL suppressed tumor growth and induced apoptosis of cancer cells. Moreover, CO99EL significantly inhibited lung metastasis from primary breast cancer. CONCLUSIONS: Our study demonstrated that 100 mg/kg CO99EL has potent anti-tumor effects against breast cancer, thus suggesting that 100 mg/kg CO99EL has potential applications in the treatment and prevention of breast cancer.


Asunto(s)
Chamaecyparis , Neoplasias , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Cicatrización de Heridas , Antiinflamatorios/farmacología , Agua/farmacología , Etanol/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias/tratamiento farmacológico
9.
PLoS One ; 18(4): e0281834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079558

RESUMEN

Interleukin-1ß (IL-1ß) is one of the most potent pro-inflammatory cytokines implicated in a wide range of autoinflammatory, autoimmune, infectious, and degenerative diseases. Therefore, many researchers have focused on developing therapeutic molecules that inhibit IL-1ß-IL-1 receptor 1 (IL-1R1) interaction for the treatment of IL-1-related diseases. Among IL-1-related diseases, osteoarthritis (OA), is characterized by progressive cartilage destruction, chondrocyte inflammation, and extracellular matrix (ECM) degradation. Tannic acid (TA) has been proposed to have multiple beneficial effects, including anti-inflammatory, anti-oxidant, and anti-tumor activities. However, it is unclear whether TA plays a role in anti-IL-1ß activity by blocking IL-1ß-IL-1R1 interaction in OA. In this study, we report the anti-IL-1ß activity of TA in the progression of OA in both in vitro human OA chondrocytes and in vivo rat OA models. Herein, using-ELISA-based screening, natural compound candidates capable of inhibiting the IL-1ß-IL-1R1 interaction were identified. Among selected candidates, TA showed hindering IL-1ß-IL-1R1 interaction by direct binding to IL-1ß using surface plasmon resonance (SPR) assay. In addition, TA inhibited IL-1ß bioactivity in HEK-Blue IL-1-dependent reporter cell line. TA also inhibited IL-1ß-induced expression of inducible nitric oxide synthase (NOS2), cyclooxygenase-2 (COX-2), IL-6, tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and prostaglandin E2 (PGE2) in human OA chondrocytes. Moreover, TA downregulated IL-1ß-stimulated matrix metalloproteinase (MMP)3, MMP13, ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)4, and ADAMTS5, while upregulating collagen type II (COL2A1) and aggrecan (ACAN). Mechanistically, we confirmed that TA suppressed IL-1ß-induced MAPK and NF-κB activation. The protective effects of TA were also observed in a monosodium iodoacetamide (MIA)-induced rat OA model by reducing pain and cartilage degradation and inhibiting IL-1ß-mediated inflammation. Collectively, our results provide evidence that TA plays a potential role in OA and IL-1ß-related diseases by hindering IL-1ß-IL-1R1 interaction and suppressing IL-1ß bioactivity.


Asunto(s)
Antiinflamatorios , Osteoartritis , Ratas , Humanos , Animales , Interleucina-1beta/metabolismo , Antiinflamatorios/uso terapéutico , FN-kappa B/metabolismo , Inflamación/patología , Cartílago/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos/metabolismo , Taninos/farmacología , Taninos/metabolismo , Células Cultivadas
10.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614321

RESUMEN

Mesenchymal stromal cells derived from induced pluripotent stem cells (iMSCs) have been proposed as alternative sources of primary MSCs with various advantages for cell therapeutic trials. However, precise evaluation of the differences between iMSCs and primary MSCs is lacking due to individual variations in the donor cells, which obscure direct comparisons between the two. In this study, we generated donor-matched iMSCs from individual bone marrow-derived MSCs and directly compared their cell-autonomous and paracrine therapeutic effects. We found that the transition from primary MSCs to iMSCs is accompanied by a functional shift towards higher proliferative activity, with variations in differentiation potential in a donor cell-dependent manner. The transition from MSCs to iMSCs was associated with common changes in transcriptomic and proteomic profiles beyond the variations of their individual donors, revealing expression patterns unique for the iMSCs. These iMSC-specific patterns were characterized by a shift in cell fate towards a pericyte-like state and enhanced secretion of paracrine cytokine/growth factors. Accordingly, iMSCs exhibited higher support for the self-renewing expansion of primitive hematopoietic progenitors and more potent immune suppression of allogenic immune responses than MSCs. Our study suggests that iMSCs represent a separate entity of MSCs with unique therapeutic potential distinct from their parental MSCs, but points to the need for iMSC characterization in the individual basis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Proteómica , Diferenciación Celular/fisiología , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo
11.
Asia Pac J Oncol Nurs ; 9(8): 100072, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35692730

RESUMEN

Objective: Home-based chemotherapy is widely used and offers advantages in terms of patient-centeredness, hospital capacity, and cost-effectiveness. However, in practice, patients experience difficulties with self-management and handling the elastomeric infuser. In this study, we aimed to explore the experiences of patients undergoing home-based chemotherapy based on patients' and nurses' perspectives. Additionally, we aimed to identify patients' unmet needs. Methods: A qualitative descriptive study was conducted in a tertiary hospital in South Korea. Ten patients undergoing home-based chemotherapy and ten nurses with experience in home-based chemotherapy participated. Data were collected by using semi-structured individual interviews and analyzed by using inductive content analysis. Results: Four main categories were identified based on the interviews: (1) ambivalence regarding comfort vs. enduring the discomfort, (2) acceptance of the discomfort as a part of them, (3) the need for more precise, numerical measurements, and (4) the realization that they need similar hands-on care at home as in a hospital. Conclusions: Although patients were satisfied with home-based chemotherapy, they were enduring the difficulties they experienced at home alone. Nurses should make an effort to identify patient needs and devise tailored nursing interventions to improve their safety.

12.
RSC Adv ; 12(21): 12957-12966, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35497009

RESUMEN

Coordination polymers (CPs: [ZnL3] n (X)2n , L = trans-1,4-bis(imidazolyl)-2-butene; X- = BF4 -, ClO4 -, NO3 -) allow for detection of the 4-nitrophenol (4-NP) oxidation process by enhanced electrochemical signals. Electrochemical measurement is a highly sensitive method providing much evidence of chemical reactions on an electrode surface. In the present study, we designed and synthesized, with reference to X-ray diffraction data and by spectroscopic analyses, new 3D coordination structures containing imidazolyl donors and zinc(ii). The presence of microcrystals [ZnL3] n (BF4)2n on the working electrode enhanced the redox signals. Therefore, we propose a simple catalytic process that can explain these results and clarify the influence of anions that constitute CP materials used to improve electrochemical detection applications. The CP materials were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), thermogravimetric (TG) analyses, single crystal X-ray diffraction (SC-XRD), and electrochemical analyses.

13.
J Am Chem Soc ; 144(7): 3099-3105, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35081312

RESUMEN

Stimuli-responsive coordination cages allow reversible control over guest binding and release, relevant for adaptive receptors, carriers, catalysts, and complex systems. Light serves as an advantageous stimulus, as it can be applied with precise spatial and temporal resolution without producing chemical waste products. We report the first Pd-mediated coordination cage based on ligands embedding a diazocine photoswitch. While the thermodynamically more stable cis-photoisomer sloppily assembles to a mixture of species with general formula [Pdncis-L2n], the less stable trans-isomer yields a defined [Pd2trans-L4] cage that reversibly converts back to the cis-system by irradiation at 530 nm or thermal relaxation. The [Pdncis-L2n] species do not bind a given guest; however, [Pd2trans-L4] is able to encapsulate a bis-sulfonate as long as it is kept assembled, requiring continuous irradiation at 385 nm. In the absence of UV light, thermal relaxation results in back-switching and guest release. Assembly and properties of the system were characterized by a combination of NMR, ion mobility ESI-MS, single-crystal X-ray diffraction, and UV-vis absorption studies.

14.
Haematologica ; 107(2): 381-392, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440923

RESUMEN

Chemoresistance of leukemic cells has largely been attributed to clonal evolution secondary to accumulating mutations. Here, we show that a subset of leukemic blasts in contact with the mesenchymal stroma undergo cellular conversion into a distinct cell type that exhibits a stem cell-like phenotype and chemoresistance. These stroma-induced changes occur in a reversible and stochastic manner driven by cross-talk, whereby stromal contact induces interleukin-4 in leukemic cells that in turn targets the mesenchymal stroma to facilitate the development of new subset. This mechanism was dependent on interleukin-4-mediated upregulation of vascular cell adhesion molecule- 1 in mesenchymal stroma, causing tight adherence of leukemic cells to mesenchymal progenitors for generation of new subsets. Together, our study reveals another class of chemoresistance in leukemic blasts via functional evolution through stromal cross-talk, and demonstrates dynamic switching of leukemic cell fates that could cause a non-homologous response to chemotherapy in concert with the patient-specific microenvironment.


Asunto(s)
Interleucina-4 , Microambiente Tumoral , Resistencia a Antineoplásicos , Humanos , Interleucina-4/farmacología , Leucemia/metabolismo , Leucemia/patología , Células Madre Mesenquimatosas
15.
J Ethnopharmacol ; 282: 114493, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34364971

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) has been used as folk medicine in East Asia and has been reported to alleviate inflammatory diseases. However, the detailed mechanisms for the anti-inflammatory effects of C. obtusa remain unclear. AIM OF THE STUDY: Although the anti-inflammatory mechanisms of natural products have been studied for decades, it is still important to identify the potential anti-inflammatory effects of natural sources. In this study, we investigated the anti-inflammatory effects and underlying mechanism of C. obtusa leaf extracts. MATERIAL &METHODS: The cell viability was determined by MTT and crystal violet staining. NO production in the supernatant was measured using Griess reagent. The cell lysates were analyzed by immunoblotting and RT-qPCR. Secreted cytokines were analyzed using ELISA kit and cytokine array kit. mRNA expression from the GSE9632 database set. Z-scores were calculated for each gene and visualized by heat map. RESULTS: Among the extracts of C. obtusa obtained with different extraction methods, the 99% ethanol leaf extract (CO99EL) strongly inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and Janus kinase/signaling transducer and activator of transcription (JAK/STAT) phosphorylation in RAW264.7 cells. In addition, CO99EL strongly inhibited LPS-induced interleukin (IL)-1ß, IL-6, IL-27, and C-C motif chemokine ligand (CCL)-1 production and directly inhibited LPS-induced JAK/STAT phosphorylation in RAW264.7 cells. CONCLUSIONS: These findings demonstrate that CO99EL significantly prevents LPS-induced macrophage activation by inhibiting the JAK/STAT axis. Therefore, we suggest the use of C. obtusa extracts as therapeutic approach for inflammatory diseases.


Asunto(s)
Chamaecyparis , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Quinasas Janus/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta , Células RAW 264.7 , Factores de Transcripción STAT/metabolismo
16.
Transl Oncol ; 15(1): 101255, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34742152

RESUMEN

The resistance of highly aggressive glioblastoma multiforme (GBM) to chemotherapy is a major clinical problem resulting in a poor prognosis. GBM contains a rare population of self-renewing cancer stem cells (CSCs) that proliferate, spurring the growth of new tumors, and evade chemotherapy. In cancer, major vault protein (MVP) is thought to contribute to drug resistance. However, the role of MVP as CSCs marker remains unknown and whether MVP could sensitize GBM cells to Temozolomide (TMZ) also is unclear. We found that sensitivity to TMZ was suppressed by significantly increasing the MVP expression in GBM cells with TMZ resistance. Also, MVP was associated with the expression of other multidrug-resistant proteins in tumorsphere of TMZ-resistant GBM cell, and was highly co-expressed with CSC markers in tumorsphere culture. On the other hands, knockdown of MVP resulted in reduced sphere formation and invasive capacity. Moreover, high expression of MVP was associated with tumor malignancy and survival rate in glioblastoma patients. Our study describes that MVP is a potentially novel maker for glioblastoma stem cells and may be useful as a target for preventing TMZ resistance in GBM patients.

17.
Dalton Trans ; 50(41): 14849-14854, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34604882

RESUMEN

Systematic interconversion between trigonal prisms [Pd3X6L2] (X- = Cl-, Br-, and I-) and cubic cages [Pd6L8]12+(X-)12 (X- = BF4- and CF3SO3-) via anion exchange was established. Self-assembly of K2PdX4 (X- = Cl- and Br-) with a C3-symmetric tridentate 1,3,5-tris(2-isonicotinamidephenoxy)benzene (L) produces a trigonal prism, [Pd3X6L2]. Further photoreaction of the [Pd3X6L2] (X- = Cl- and Br-) with CH2I2 gives rise to a halide-exchanged species, [Pd3I6L2]. In contrast, anion exchange of [Pd3X6L2] (X- = Cl-, Br-, and I-) with BF4- yields cubic-shaped cages, [Pd6L8]12+(BF4-)12, with an inner cavity of 15.9 × 15.9 × 15.9 Å3. Successive anion exchange of [Pd6L8]12+(BF4-)12 with CF3SO3- gives rises to anion-exchanged [Pd6L8]12+(CF3SO3-)12 and vice versa without cage destruction. Thus, the cage system is specifically sensitive to anions, enabling cage formation to recognize the binding affinity and size of various anions.

18.
J Am Chem Soc ; 143(17): 6339-6344, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900773

RESUMEN

A bent fluorenone-based dipyridyl ligand LA reacts with PdII cations to a solvent-dependent dynamic library of [PdnL2n] assemblies, constituted by a [Pd3LA6] ring and a [Pd4LA8] tetrahedron as major components, and a [Pd6LA12] octahedron as minor component. Introduction of backbone steric hindrance in ligand LB allows exclusive formation of the [Pd6LB12] octahedron. Combining equimolar amounts of both ligands results in integrative self-sorting to give an unprecedented [Pd4LA4LB4] heteroleptic tetrahedron. Key to the non-statistical assembly outcome is exploiting the structural peculiarity of the [Pd4L8] tetrahedral topology, where the four lean ligands occupy two doubly bridged edges and the bulky ligands span the four remaining, singly bridged edges. Hence, the system finds a compromise between the entropic drive to form an assembly smaller than the octahedron and the enthalpic prohibition of pairing two bulky ligands on the same edge of the triangular ring. The emission of luminescent LA is maintained in both homoleptic [Pd3LA6] and heteroleptic [Pd4LA4LB4].

19.
J Am Chem Soc ; 143(10): 3865-3873, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33673736

RESUMEN

It is difficult to assemble multi-component metallo-supramolecular architectures in a non-statistical fashion, which limits their development toward functional materials. Herein, we report a system of interconverting bowls and cages that are able to respond to various selective stimuli (light, ligands, anions), based on the self-assembly of a photochromic dithienylethene (DTE) ligand, La, with PdII cations. By combining the concept of "coordination sphere engineering", relying on bulky quinoline donors, with reversible photoswitching between the ligand's open (o-La) and closed (c-La) forms, a [Pd2(o-La)4] cage (o-C) and a [Pd2(c-La)3] bowl (c-B) were obtained, respectively. This structural rearrangement modulates the system's guest uptake capabilities. Among three bis-sulfonate guests (G1, G2, and G3), the cage can encapsulate only the smallest (G1), while the bowl binds all of them. Bowl c-B was further used to synthesize a series of heteroleptic cages, [Pd2LA3LB], representing a motif never reported before. Additional ligands (Lc-f), with short or long arms, tune the cavity size, thus enabling or preventing guest uptake. Addition of Br-/Ag+ makes it possible to change the overall charge, again triggering guest uptake and release, as well as fourth ligand de-/recomplexation. In combination, site-selective introduction of functionality and application of external stimuli lead to an intricate system of hosts with different guest preferences. A high degree of complexity is achieved through cooperativity between only a few components.

20.
Stem Cells Dev ; 30(7): 363-373, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33593142

RESUMEN

The primitive state (stemness) of mesenchymal stromal cells (MSCs) is responsible for supporting the function of tissue-specific stem cells to regenerate damaged tissues. However, molecular mechanisms regulating the stemness of MSCs remain unknown. In this study, we found that the primitive state of MSCs is hierarchically regulated by the expression levels of the chromatin remodeling complex, CHD1, with CHD1 expression levels higher in the undifferentiated state, and decreasing upon MSC differentiation. Consistently, CHD1 expression levels decrease during progressive loss of clonogenic progenitors (CFU-F) induced by passage cultures. Moreover, knockdown (KD) of CHD1 decreased CFU-F frequency, whereas CHD1 overexpression increased it. In addition, the expression of stem cell-specific genes was down- or upregulated upon KD or overexpression of CHD1, respectively, accompanied by associated changes in chromatin condensation. Importantly, altering CHD1 expression levels affected the ability of MSCs to support the self-renewing expansion of hematopoietic stem cells (HSCs). Furthermore, CHD1 levels were significantly decreased in MSCs from acute myeloid leukemia or aplastic anemia patients, where CFU-F and HSC-supporting activities are lost. Altogether, these findings show that chromatin remodeling by CHD1 is a molecular parameter that influences the primitive state of MSCs and their stem cell-supporting activity, which controls tissue regeneration.


Asunto(s)
Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adipogénesis/genética , Proliferación Celular/genética , Células Cultivadas , Técnicas de Cocultivo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal/genética , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...