Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 64(22): 16598-16608, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34762432

RESUMEN

The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not ß-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.


Asunto(s)
Antineoplásicos/uso terapéutico , Complemento C5a/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Receptor de Anafilatoxina C5a/agonistas , Animales , Antineoplásicos/farmacología , Humanos , Ratones , Receptor de Anafilatoxina C5a/metabolismo
2.
RSC Med Chem ; 12(9): 1574-1584, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34671739

RESUMEN

Conotoxins are peptides found in the venoms of marine cone snails. They are typically highly structured and stable and have potent activities at nicotinic acetylcholine receptors, which make them valuable research tools and promising lead molecules for drug development. Many conotoxins are also highly modified with posttranslational modifications such as proline hydroxylation, glutamic acid gamma-carboxylation, tyrosine sulfation and C-terminal amidation, amongst others. The role of these posttranslational modifications is poorly understood, and it is unclear whether the modifications interact directly with the binding site, alter conotoxin structure, or both. Here we synthesised a set of twelve conotoxin variants bearing posttranslational modifications in the form of native sulfotyrosine and C-terminal amidation and show that these two modifications in combination increase their activity at nicotinic acetylcholine receptors and binding to soluble acetylcholine binding proteins, respectively. We then rationalise how these functional differences between variants might arise from stabilization of the three-dimensional structures and interactions with the binding sites, using high-resolution nuclear magnetic resonance data. This study demonstrates that posttranslational modifications can modulate interactions between a ligand and receptor by a combination of structural and binding alterations. A deeper mechanistic understanding of the role of posttranslational modifications in structure-activity relationships is essential for understanding receptor biology and could help to guide structure-based drug design.

3.
Biomedicines ; 8(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066369

RESUMEN

Relaxin-3 is a highly conserved two-chain neuropeptide that acts through its endogenous receptor the Relaxin Family Peptide-3 (RXFP3) receptor. The ligand/receptor system is known to modulate several physiological processes, with changes in food intake and anxiety-levels the most well studied in rodent models. Agonist and antagonist analogues based on the native two-chain peptide are costly to synthesise and not ideal drug leads. Since RXFP3 interacting residues are found in the relaxin B-chain only, this has been the focus of analogue development. The B-chain is unstructured without the A-chain support, but in single-chain variants structure can be induced by dicarba-based helical stapling strategies. Here we investigated whether alternative helical inducing strategies also can enhance structure and activity at RXFP3. Combinations of the helix inducing α-aminoisobutyric acid (Aib) were incorporated into the sequence of the relaxin-3 B-chain. Aib residues at positions 13, 17 and 18 partially reintroduce helicity and activity of the relaxin-3 B-chain, but other positions are generally not suited for modifications. We identify Thr21 as a putative new receptor contact residue important for RXFP3 binding. Cysteine residues were also incorporated into the sequence and cross-linked with dichloroacetone or α, α'-dibromo-m-xylene. However, in contrast to previously reported dicarba variants, neither were found to promote structure and RXFP3 activity.

4.
Front Chem ; 8: 87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133341

RESUMEN

Relaxin-3 is a neuropeptide with important roles in metabolism, arousal, learning and memory. Its cognate receptor is the relaxin family peptide-3 (RXFP3) receptor. Relaxin-3 agonist and antagonist analogs have been shown to be able to modulate food intake in rodent models. The relaxin-3 B-chain is sufficient for receptor interactions, however, in the absence of a structural support, linear relaxin-3 B-chain analogs are rapidly degraded and thus unsuitable as drug leads. In this study, two different disulfide-stabilized scaffolds were used for grafting of important relaxin-3 B-chain residues to improve structure and stability. The use of both Veronica hederifolia Trypsin inhibitor (VhTI) and apamin grafting resulted in agonist and antagonist analogs with improved helicity. VhTI grafted peptides showed poor binding and low potency at RXFP3, on the other hand, apamin variants retained significant activity. These variants also showed improved half-life in serum from ~5 min to >6 h, and thus are promising RXFP3 specific pharmacological tools and drug leads for neuropharmacological diseases.

5.
J Biol Chem ; 293(41): 15765-15776, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30131342

RESUMEN

The neuropeptide relaxin-3 and its receptor relaxin family peptide receptor-3 (RXFP3) play key roles in modulating behavior such as memory and learning, food intake, and reward seeking. A linear relaxin-3 antagonist (R3 B1-22R) based on a modified and truncated relaxin-3 B-chain was recently developed. R3 B1-22R is unstructured in solution; thus, the binding conformation and determinants of receptor binding are unclear. Here, we have designed, chemically synthesized, and pharmacologically characterized more than 60 analogues of R3 B1-22R to develop an extensive understanding of its structure-activity relationships. We show that the key driver for affinity is the nonnative C-terminal Arg23 Additional contributors to binding include amino acid residues that are important also for relaxin-3 binding, including Arg12, Ile15, and Ile19 Intriguingly, amino acid residues that are not exposed in native relaxin-3, including Phe14 and Ala17, also interact with RXFP3. We show that R3 B1-22R has a propensity to form a helical structure, and modifications that support a helical conformation are functionally well-tolerated, whereas helix breakers such as proline residues disrupt binding. These data suggest that the peptide adopts a helical conformation, like relaxin-3, upon binding to RXFP3, but that its smaller size allows it to penetrate deeper into the orthosteric binding site, creating more extensive contacts with the receptor.


Asunto(s)
Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Alanina/análogos & derivados , Alanina/síntesis química , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Humanos , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Conformación Proteica en Hélice alfa , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Relaxina/síntesis química , Relaxina/química , Relación Estructura-Actividad
6.
J Clin Invest ; 128(4): 1569-1580, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29528337

RESUMEN

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic "mimics" using subunits that do not exist in the natural world. We developed a platform based on D-amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus-specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.


Asunto(s)
Materiales Biomiméticos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Biblioteca de Péptidos , Vacunación , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Cultivadas , Humanos , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/farmacología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control
7.
Angew Chem Int Ed Engl ; 55(15): 4692-6, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26948522

RESUMEN

α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.


Asunto(s)
Secuencias de Aminoácidos , Bloqueadores de los Canales de Calcio/farmacología , Conotoxinas/química , Cisteína/análisis , Receptores de GABA-B/metabolismo , Secuencia de Aminoácidos , Animales , Conotoxinas/farmacología , Humanos , Receptores de GABA-B/química , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Xenopus
8.
Biochemistry ; 54(31): 4863-76, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26174911

RESUMEN

Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.


Asunto(s)
Bacteriocinas/química , Enterococcus faecium/química , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...