Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Food Sci Biotechnol ; 33(1): 171-180, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186621

RESUMEN

Following 3R (reduction, refinement, and replacement) principles, we employed the rat liver S9 fraction to mimic liver metabolism of curcumol having high in vitro IC50 on cancer cells. In HCT116 and HT29 colon cancer cells, the metabolites of curcumol by S9 fraction exerted more enhanced activity in inducing cell cycle arrest and apoptosis via regulating the expression of cyclin D1, CDK1, p21, PARP and Bcl-2 than curcumol. In addition, oral administration of curcumol at 4 mg/kg BW significantly suppressed the development of colon tumor induced by azoxymethane/dextran sulfate sodium, and induced cell cycle arrest and apoptosis in tumor tissues. In mass analysis, curcumenol and curzerene were identified as the metabolites of curcumol by S9 fraction metabolism. Taken together, curcumol metabolites showed the enhanced suppressive effect on colon cancer, suggesting that S9 fraction can be considered as simple, fast, and bio-mimicking platform for the screening of chemical libraries on different chronic diseases.

2.
Food Sci Biotechnol ; 33(3): 711-720, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38274180

RESUMEN

In this study, we investigated the effect of cycloastragenol (CAG), a triterpenoid isolated from Astragalus membranaceus roots, on regulating the adipogenesis and fat accumulation in vitro and in vivo. During the adipogenesis of 3T3-L1 cells, CAG inhibited lipid accumulation and the expression of key adipogenic factors, proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding protein α (C/EBPα) and increased the expression of Gli1, a key mediator in Hedgehog (Hh) signaling. In HFD-induced animal experiment, CAG significantly reduced body weight gain without affecting brown fat weight. In addition, CAG regulated the expression of PPARγ, C/EBPα, and Gli1 in visceral white adipose tissue (vWAT). We also confirmed the inhibitory effect of CAG on specifically targeting white adipose tissue (WAT) formation in stromal vascular fraction (SVF) cell differentiation. Taken together, these results suggest that CAG may be a potent phytochemical preventing adipogenesis and obesity via Hh signaling. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01403-0.

3.
Food Sci Biotechnol ; 32(14): 2163, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37860740

RESUMEN

[This corrects the article DOI: 10.1007/s10068-022-01130-y.].

5.
J Microbiol Biotechnol ; 33(10): 1351-1360, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37415082

RESUMEN

Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.


Asunto(s)
Espectrometría de Masas en Tándem , Glándula Tiroides , Biotransformación
6.
Food Sci Biotechnol ; 32(7): 997-1003, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37123064

RESUMEN

Perilla frutescens is an annual herbaceous plant widely cultivated for oil production in China, Japan, and Korea. In this study, we investigated the effect of perilla oil (PO) on thrombosis induced by collagen and epinephrine (CE) in rats. The oral administration of PO significantly increased prothrombin time (PT) and activated partial thromboplastin time (aPTT) in the blood plasma and inhibited the expression of cells adhesion markers (CAMs) such as intercellular CAM-1 (ICAM-1), vascular CAM (VCAM-1), E-selectin and P-selectin in the aorta tissue. Furthermore, pulmonary occlusion induced by CE in rats was suppressed by PO. α-Linolenic acid (ALA) was quantified at 60.14 ± 2.50 g/100 g of PO, and its oral administration at the same concentration with that in PO exerted the similar effect on PT, aPTT, ICAM-1, VCAM-1, E-selectin and P-selectin in CE-induced thrombosis rats. Taken together, PO and ALA significantly ameliorated thrombosis by regulating CAMs.

7.
Food Sci Biotechnol ; 31(11): 1473-1480, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36060569

RESUMEN

In this study, we investigated the effect of 1,3,5,8-tetrahydroxyxanthone (THX) on the adipogenesis of 3T3-L1 adipocytes. THX, a xanthone isolated from Gentianella acuta, inhibited lipid accumulation in 3T3-L1 adipocytes and reduced the protein levels of the key adipogenic transcriptional factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), in a dose-dependent manner. In addition, THX enhanced the transcriptional activity of Gli1 known as the key indicator of Hedgehog (Hh) signaling activity and increased the expression of Gli1 and its upstream regulator Smo. The Smo activator SAG exerted the similar effect with THX on regulating Gli1, Smo, PPARγ and C/EBPα expression, which led to the suppression of fat formation in 3T3-L1 adipocytes. Furthermore, we found that the inhibitory effect of THX on adipogenesis was derived from regulation of the early stage of adipogenesis. These results suggest that THX suppresses the differentiation of adipocyte through Hh signaling and may be considered as a potent agent for the prevention of obesity.

8.
Food Sci Biotechnol ; 31(8): 1073-1080, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35873370

RESUMEN

In this study, it was evaluated the effect of freeze-dried powder of Capsicum annuum L. cv. DANGJO (DJ) on ameliorating hyperglycemia in type 2 diabetes rat model induced by high-fat diet (HFD) and streptozotocin (STZ). Oral administration of DJ significantly reduced non-fasting blood glucose (NFBG) and insulin levels, as well as glycated hemoglobin (HbA1c) level, a representative marker for diabetes, in HFD/STZ treated rats whereas the administration of green hot pepper (GHP) and green sweet pepper (GSP) did not show the significant effect. Quercitrin was quantified (40.97 mg/100 g of DJ) by HPLC, and administration of the same amount of quercitrin with DJ exerted the significant reduction of blood glucose level, strongly supporting that quercitrin is the key component in ameliorating the hyperglycemia of DJ in HFD/STZ treated rats. These results suggest that DJ can be considered as a potent functional food in preventing hyperglycemia in type 2 diabetes mellitus.

9.
J Agric Food Chem ; 70(26): 7941-7952, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749593

RESUMEN

Hyperactivation of hedgehog signaling occurs in colorectal cancer stem-like cells (CSCs), a rare subpopulation, potentially involved in metastasis, chemotherapy resistance, and cancer relapse. Garcinone C, a xanthone isolated from mangosteen (Garcinia mangostana), suppresses colorectal cancer in vivo and in vitro by inhibiting Gli1-dependent noncanonical hedgehog signaling. Herein, we investigated the effect of garcinone C on cancer stemness and invasiveness in colorectal cancer; Gli1 was noted as pivotal in maintaining stemness and invasiveness in HCT116 and HT29 CSCs. Garcinone C inhibited the proliferation and self-renewal of HCT116 and HT29 CSCs. Colon cancer stemness markers such as CD44, CD133, ALDH1, and Nanog were significantly decreased by garcinone C. Computational studies showed that garcinone C showed a high affinity with the Gli1 protein ZF domain by forming hydrogen bonds with amino acid residues of ASP244, ARG223, and ASP216. Besides, MG132 blocked the effects of garcinone C on Gli1. Thus, garcinone C suppressed colorectal CSCs by binding to Gli1 and enhancing its degradation. MMP2 and MMP9 levels, invasive-related markers, were increased in HCT116 CSCs but decreased by garcinone C. E-cadherin level was reduced in HCT116 CSCs, while the presence of garcinone C was restored. Garcinone C inhibited the proliferation and invasiveness of colorectal CSCs by targeting Gli1-dependent Hh signaling. Garcinone C may be a potent natural agent against colorectal cancer relapse.


Asunto(s)
Neoplasias Colorrectales , Xantonas , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Células Madre Neoplásicas , Recurrencia , Xantonas/farmacología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/farmacología
10.
J Med Food ; 25(3): 313-323, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35320011

RESUMEN

Many studies have demonstrated that adipogenesis is associated with obesity, and the Hedgehog (Hh) signaling pathway regulates adipogenesis and obesity. Following the screening study of the chemical library evaluating the effect of vitexin on Gli1 transcriptional activity, vitexin was chosen as a candidate for antiadipogenic efficacy. Vitexin significantly reduced lipid accumulation and suppressed C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptor γ) expression, which are known as key adipogenic factors in the early stages of adipogenesis by activating Hh signaling. Furthermore, Hh inhibitor GANT61 reversed the effect of AMP-activated protein kinase (AMPK) activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), indicating that Hh signaling is an upstream regulator of AMPK in 3T3-L1 cells. Vitexin suppressed adipogenesis by regulating Hh signaling and phosphorylation of AMPK, leading to the inhibition of fat formation. These results suggest that vitexin can be considered a potent dietary agent in alleviating lipid accumulation and obesity.


Asunto(s)
Adipogénesis , Proteínas Hedgehog , Células 3T3-L1 , Adipocitos , Animales , Apigenina , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacología , Ratones , Transducción de Señal
11.
Food Funct ; 12(20): 10196-10209, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34542136

RESUMEN

Inflammatory cytokine tumor necrosis factor-α (TNFα) has been demonstrated to accelerate the progression and metastasis of various carcinomas. In this study, we investigated the effect of amentoflavone on inhibiting the migration and invasion of TNFα-induced breast cancer cells. Results showed that amentoflavone significantly blocked the cellular migration and invasion of MCF10DCIS.com and MDA-MB-231 cells at a concentration of 10 µM but did not affect the cell viability. The mRNA and protein levels of matrix metalloproteinase (MMP)-9, significantly activated by TNFα, were reversed by amentoflavone treatment in a dose-dependent manner in MCF10DCIS.com cells. Congruent with the protein level, the activity of MMP-9 was significantly suppressed by amentoflavone treatment. Additionally, we found that amentoflavone dampened Gli1-dependent noncanonical hedgehog signaling, which is a key factor in the regulation of migration and invasion in TNFα-induced human breast cancer cells. Further study elucidated that TNFα enhanced Gli1 through the activation of the AKT/mTOR/S6K1 cascade, whereas it receded after amentoflavone treatment in human breast cancer cells. In summary, amentoflavone abrogated Gli1 activation in TNFα-induced mammary tumor cells, resulting in a decrease of invasiveness in human breast cancer cells via mediating AKT/mTOR/S6K1 signaling. Amentoflavone should be considered as a potent food ingredient for the retardation of mammary tumorigenesis.


Asunto(s)
Biflavonoides/farmacología , Neoplasias de la Mama/metabolismo , Movimiento Celular/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
12.
Phytomedicine ; 92: 153715, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474353

RESUMEN

BACKGROUND: The regulative effects of caudatin, a C-21 steroid that is identified from Cynanchum bungee roots, on adipogenesis and obesity have not been studied. Many studies have demonstrated that the activation of hedgehog (Hh) signaling can help prevent obesity. Therefore, we hypothesized that caudatin can inhibit adipogenesis and obesity via activating the Hh signaling pathway. METHODS: To investigate the effects of caudatin on adipogenesis in 3T3-L1 preadipocytes and high-fat diet induced obesity in C57BL/6 mice, in vitro and in vivo experiments were performed. For in vitro evaluation, Oil red O staining were used to represent lipid accumulation in differentiated 3T3-L1 adipocytes. For in vivo assessment, male 5 week-old C57BL/6 mice were fed with standard chow diet, high-fat diet (HFD), HFD with 25 mg/kg caudatin, HFD with 1mg/kg purmorpharmine for 10 weeks, respectively. Hh signaling and key adipogenic marker involved in adipogenesis were evaluated by real-time PCR and western blot. The adipocyte size of white adopose tissue and lipid storage of liver were visualized by hematoxylin and eosin staining. In addition, the expression of Gli1 and peroxisome proliferator-activated receptor γ (PPARγ) in white adipose tissue were investigated by immunohistochemistry staining. RESULTS: Caudatin suppressed the accumulation of lipid droplets and downregulated the expression of key adipogenic factors, i.e., peroxisome proliferator-activated receptor γ PPARγ and CCAAT-enhancer binding protein α (C/EBPα), through activating Hh signaling in differentiated 3T3-L1 cells. Furthermore, caudatin and the Hh activator purmorpharmine significantly decreased body weight gain and white adipose tissue (WAT) weight in HFD-induced mice and affected adipogenic markers and Hh signaling mediators in WAT, which were in line with the in vitro experimental results. CONCLUSION: To our best knowledge, it is the first report to demonstrate that caudatin downregulated adipocyte differentiation and suppressed HFD-induced body weight gain through activating the Hh signaling pathway, suggesting that caudatin can potentially counteract obesity.


Asunto(s)
Adipogénesis , Fármacos Antiobesidad , Células 3T3-L1 , Adipocitos , Animales , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Glicósidos , Proteínas Hedgehog , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma , Transducción de Señal , Esteroides/farmacología , Aumento de Peso
13.
J Microbiol Biotechnol ; 31(9): 1256-1261, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34226405

RESUMEN

Rubus coreanus Miquel (bokbunja), Korean black raspberry, is known to possess various phytochemicals that exert antioxidative, anti-inflammatory, and anti-cancer effects. However, most studies on Rubus coreanus Miquel have been performed with the solvent extracts and/or a single component to demonstrate the efficacy, while studies evaluating the effect of the whole fructus of Rubus coreanus Miquel are limited. In this study, therefore, we employed the isoproterenol (IPN)-induced myocardial infarction model and investigated the effect of freeze-dried powder of Rubus coreanus Miquel (RCP) on oxidative stress and prevention of organ damage. Oral administration of RCP reduced the level of toxicity markers, alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) without affecting body weight and diet intake. The oxidative stress marker glutathione (GSH) increased about 45% and malonaldehyde (MDA) decreased about 27% compared to the IPN group with RCP-H (3%) administration. By histological analysis, IPN induced significant myocardial damage in the heart and vascular injury in the liver, and RCP administration ameliorated the damages in a dose-dependent manner. Taken together, RCP activated the antioxidant system leading to prevention of damage to organs by IPN in rats, making it possible to expect beneficial efficacies by consuming the whole fructus of Rubus coreanus Miquel.


Asunto(s)
Corazón/efectos de los fármacos , Isoproterenol/toxicidad , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Rubus/química , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Liofilización , Frutas/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/patología , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Polvos , Ratas
14.
J Chromatogr A ; 1649: 462222, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34034111

RESUMEN

Thyroid-disrupting compounds (TDCs) are chemicals that modify thyroid gland function and disrupt hormonal homeostasis. Like other endocrine-disrupting chemicals (EDCs), TDCs often show altered activities following post-metabolic modification via endogenous enzymatic reaction. Hence, we developed evaluation system consisting of (1) in vitro metabolic reaction module, (2) high-resolution mass-spectrometry, and (3) human cell-based reporter gene assay. We developed the reaction module using rat S9 fraction where levothyroxine (T4) as a model compound, was subjected to phase-I or phase-I+II biotransformation. The metabolic profiles of the biotransformants were systematically configured based on in-silico prediction of potential products and experimental validation using liquid-chromatography Orbitrap mass-spectrometry. Thyroid agonistic activities of the biotransformants were evaluated by thyroid receptor-mediated stably transfected transcriptional activation assay using hTRE_HeLa cells. Indeed, we detected the increased activities following metabolic conversion of T4 in a dose-dependent manner. Note that the activity by phase-I+II reaction was much greater than by phase-I reaction (3.8-fold increase). Subsequently, we explored metabolic signatures, which potentially contributed to the hyperactivity by phase-I+II reaction. A total of 77 metabolic features were annotated based on the in-silico prediction, which included biotransformants with deiodination and conjugation. The glucuronide-conjugated form was found at the highest fold-increase (970-fold increase) whereas marginal increases were determined in the deiodinized forms (1.6-fold increase in T3 and 2.0-fold increase in rT3). Further, the systematic approach was evaluated and comparably analyzed by the metabolic profiles of bithionol, which is structurally related to T4. Our current result suggested the potential application of in vitro evaluation system to risk assessment of thyroid-disrupting activity.


Asunto(s)
Disruptores Endocrinos/farmacología , Tiroxina/metabolismo , Animales , Biotransformación/efectos de los fármacos , Cromatografía de Gases , Cromatografía Liquida , Simulación por Computador , Células HeLa , Humanos , Espectrometría de Masas , Metabolómica , Ratas , Tiroxina/farmacocinética
15.
Environ Pollut ; 283: 117090, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33872936

RESUMEN

Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.


Asunto(s)
Adipogénesis , Plaguicidas , Células 3T3-L1 , Adipocitos , Animales , Estrógenos , Ratones , Organización para la Cooperación y el Desarrollo Económico , Plaguicidas/toxicidad , Receptores de Estrógenos/genética
16.
Phytomedicine ; 79: 153334, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32920288

RESUMEN

BACKGROUND: Although garcinone C, a natural xanthone derivative identified in the pericarp of Garcinia mangostana, has been demonstrated to exert different health beneficial activities in oxidative stress and ß-amyloid aggregation, the role of garcinone C in colon tumorigenesis has not been investigated. In addition, aberrant Hedgehog (Hh) signaling activation is associated with tumorigenesis including colon cancer. Here, we hypothesized that garcinone C can prevent colon tumorigenesis through regulating the Hh signaling pathway. METHOD: Colony formation assay and flow cytometry were used to evaluate the effect of garcinone C on the proliferation and cell cycle progression of colon cancer cells. Protein expression of cell cycle related markers and Hh/Gli1 signaling mediators were determined. The regulatory effect of orally administered garcinone C on the Hh/Gli1 signaling pathway and colon tumorigenesis was evaluated in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer animal model. RESULTS: Garcinone C suppressed the proliferation of colon cancer cells, induced G0/G1 cell cycle arrest, as well as regulated the expression of cell cycle-related markers such as cyclin D1, cyclin E, CDK6, and p21. Garcinone C inhibited the expression of Gli1, a key mediator of Hedgehog signaling, and protein kinase B (AKT) phosphorylation in Smo-independent colon cancer cells. In the AOM/DSS-induced colon tumorigenesis model, garcinone C significantly inhibited tumor development, regulated the expression of cell cycle markers and Gli1, and reduced AKT phosphorylation in colon tumor tissues, which is consistent with our in vitro results. CONCLUSION: Garcinone C can suppress colon tumorigenesis in vitro and in vivo through Gli1-dependent non-canonical Hedgehog signaling, suggesting that it may serve as a potent chemopreventive agent against colon tumorigenesis.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Proteínas Hedgehog/metabolismo , Xantonas/farmacología , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Anticarcinógenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Masculino , Ratones Endogámicos C57BL , Proteínas Oncogénicas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína con Dedos de Zinc GLI1/genética
17.
J Clin Med ; 10(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396842

RESUMEN

It has been recognized that p-Coumaric acid (p-CA) has protective effects as an antioxidant, anti-inflammatory agent. A sensitive and efficient Liquid Chromatography-Mass Spectrometry (LC-MS) method for maximum determination of p-CA in human plasma has been established using Ultra-performance liquid Chromatography-tandem mass Spectrometry (UPLC-MS/MS). This study provides the developed analysis of p-CA extracted from Bambusae Caulis in Taeniam (BC) to examine the improvement of the treatment p-CA, IGF-1 and Osteocalcin level in human children which are important factors on the growth of children's height through Pharmacokinetics/Pharmacodynamics (PK/PD) model. p-CA and internal standard in a plasma sample were detected by the Multiple Reaction Monitoring (MRM) scan mode with positive ion detection. The sample participating in the study was made of 34 subjects (placebo = 18, treatment = 16). The subjects were enrolled to be randomized to the control group and BC group. Randomized subjects took tested treatment twice a day, three capsules with oral administration (258 mg/capsule) each time after a meal. Standard calibration curves (reproducibility) were constructed and the lower limit of quantitation (LLOQ) for p-CA was found to be 0.2 ng/mL on injection of the sample into the UPLC-MS/MS system. Accuracy and precision were evaluated and the intra-accuracy was 99.2-103.8% with precision of 1.0-5.6% and inter-accuracy was 99.6-108.4% and precision of 1.3-6.4% for p-CA. The method has been successfully applied to PK/PD studies of p-CA in human plasma. The p-CA, BC in Taeniam extract increased the level of IGF-1 and Osteocalcin, and changed the height from baseline, which suggested that the p-CA could play an important role in longitudinal bone growth. Therefore, the p-CA extracted from BC in Taeniam might be a good alternative medicine to growth hormone (GH) therapy.

18.
Food Sci Biotechnol ; 28(6): 1907-1917, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31807365

RESUMEN

The cytotoxicity of TiO2 nanoparticles are well-known, but the particle size-dependent induction of ER stress and apoptosis by TiO2 in hepatocytes has not been elucidated clearly. In the present study, we investigated whether a fine TiO2 particle and two types of TiO2 nanoparticles induce ER stress and apoptosis differently in HepG2 cells. A particle size-dependent decrease in cell viability was observed after exposure to the TiO2 particles. The levels of ER stress-related proteins (BiP, CHOP, ATF6α, and p-PERK) were increased with decreasing particle size. TiO2 particles induced ER stress-mediated apoptosis in a particle size-dependent manner as seen by a decrease in the expression of Bcl-2, and increases in the expression of Bax, caspase-12, and cleaved caspase-3. These results indicated that the cytotoxicity produced by TiO2 particles was related to particle size, with smaller TiO2 nanoparticles producing greater toxic effects involving ER stress and apoptosis in the HepG2 cells.

19.
J Dairy Sci ; 102(8): 6718-6725, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31155246

RESUMEN

This study aimed to screen lactic acid bacteria (LAB) for their anti-inflammatory activity by using RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis. In all, 192 LAB strains were isolated from healthy human feces, of which 8 strains showed excellent nitric oxide (NO) inhibitory activity. Peptidoglycan extracts of these 8 LAB strains were subjected to NO assay, Western blot, and ELISA. Among the 8 tested strains, extracts of 4 strains significantly inhibited the production of NO, related enzyme activities such as inducible nitric oxide synthase and cyclooxygenase 2, and key cytokines such as tumor necrosis factor-α and IL-6 in RAW264.7 cells. The 4 strains belonged to Lactobacillus (CAU1054, CAU1055, CAU1064, and CAU1301). Oral administration of the 4 strains inhibited DSS-induced body weight loss, colon shortening, and colon damage in ICR mice. The colon tissue of the mice treated with Lactobacillus plantarum strain CAU1055 had significantly reduced levels of inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor-α, and IL-6. We found that strain CAU1055 could be used as a candidate probiotic strain for the prevention and treatment of inflammatory bowel disease. Further studies are warranted to confirm the mechanisms of interaction between peptidoglycan of L. plantarum strain CAU1055 and upstream cellular signaling mediators.


Asunto(s)
Colitis/prevención & control , Sulfato de Dextran/farmacología , Inflamación/prevención & control , Lactobacillus plantarum/fisiología , Lipopolisacáridos/farmacología , Animales , Colitis/inducido químicamente , Colitis/terapia , Inhibidores de la Ciclooxigenasa 2 , Citocinas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Heces/microbiología , Humanos , Inflamación/terapia , Lactobacillus plantarum/aislamiento & purificación , Ratones , Ratones Endogámicos ICR , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Probióticos/administración & dosificación , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
20.
Food Funct ; 10(5): 2691-2700, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31026007

RESUMEN

ß-Thujaplicin, a natural monoterpenoid, has been demonstrated to exert health beneficial activities in chronic diseases. However, it has not been studied in regulating estrogen receptor (ER) negative breast cancer. Here, we investigated the effect of ß-thujaplicin on inhibiting ER-negative basal-like breast cancer and the underlying mechanism of action using an in vitro and in vivo xenograft animal model. ß-Thujaplicin induced G0/G1 phase cell cycle arrest and regulated cell cycle mediators, cyclin D1, cyclin E, and cyclin-dependent kinase 4 (CDK 4), leading to the inhibition of the proliferation of ER-negative basal-like MCF10DCIS.com human breast cancer cells. It also modulated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase (GSK-3ß) and the protein level of ß-catenin. In an MCF10DCIS.com xenograft animal model, ß-thujaplicin significantly inhibited tumor growth, reduced tumor weight, and regulated the expression of cell cycle proteins, phosphorylation of AKT and GSK-3ß, and protein level of ß-catenin in the tumor tissues. These results demonstrate that ß-thujaplicin can suppress basal-like mammary tumor growth by regulating GSK-3ß/ß-catenin signaling, suggesting that ß-thujaplicin may be a potent chemopreventive agent against the basal-like subtype of breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Monoterpenos/administración & dosificación , Tropolona/análogos & derivados , beta Catenina/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chamaecyparis/química , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Ratones Endogámicos BALB C , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Thuja/química , Tropolona/administración & dosificación , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...