Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38675383

RESUMEN

To overcome the limitations of current nano/micro-scale drug delivery systems, an Escherichia coli (E. coli)-based drug delivery system could be a potential alternative, and an effective tumor-targeting delivery system can be developed by attempting to perform chemical binding to the primary amine group of a cell membrane protein. In addition, positron emission tomography (PET) is a representative non-invasive imaging technology and is actively used in the field of drug delivery along with radioisotopes capable of long-term tracking, such as zirconium-89 (89Zr). The membrane proteins were labeled with 89Zr using chelate (DFO), and not only was the long-term biodistribution in tumors and major organs evaluated in the body, but the labeling stability of 89Zr conjugated to the membrane proteins was also evaluated through continuous tracking. E. coli accumulated at high levels in the tumor within 5 min (initial time) after tail intravenous injection, and when observed after 6 days, 89Zr-DFO on the surface of E. coli was found to be stable for a long period of time in the body. In this study, we demonstrated the long-term biodistribution and tumor-targeting effect of an E. coli-based drug delivery system and verified the in vivo stability of radioisotopes labeled on the surface of E. coli.

2.
Biomed Eng Online ; 22(1): 81, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596652

RESUMEN

BACKGROUND: In this study, we proposed a deep learning technique that can simultaneously detect suspicious positions of benign vocal cord tumors in laparoscopic images and classify the types of tumors into cysts, granulomas, leukoplakia, nodules and polyps. This technique is useful for simplified home-based self-prescreening purposes to detect the generation of tumors around the vocal cord early in the benign stage. RESULTS: We implemented four convolutional neural network (CNN) models (two Mask R-CNNs, Yolo V4, and a single-shot detector) that were trained, validated and tested using 2183 laryngoscopic images. The experimental results demonstrated that among the four applied models, Yolo V4 showed the highest F1-score for all tumor types (0.7664, cyst; 0.9875, granuloma; 0.8214, leukoplakia; 0.8119, nodule; and 0.8271, polyp). The model with the lowest false-negative rate was different for each tumor type (Yolo V4 for cysts/granulomas and Mask R-CNN for leukoplakia/nodules/polyps). In addition, the embedded-operated Yolo V4 model showed an approximately equivalent F1-score (0.8529) to that of the computer-operated Yolo-4 model (0.8683). CONCLUSIONS: Based on these results, we conclude that the proposed deep-learning-based home screening techniques have the potential to aid in the early detection of tumors around the vocal cord and can improve the long-term survival of patients with vocal cord tumors.


Asunto(s)
Quistes , Pliegues Vocales , Humanos , Redes Neurales de la Computación , Simulación por Computador , Leucoplasia
3.
Sci Rep ; 11(1): 14823, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285311

RESUMEN

The fabrication of flexible and stretchable electronics is a critical requirement for the successful application of wearable healthcare devices. Although such flexible electronics have been commonly fabricated by microelectromechanical system (MEMS) technologies, they require a specialised equipment for vacuum deposition, photolithography, and wet and dry etching. A photolithography-free simple patterning method using a desktop plotter cutter has been proposed; however, the metal formation and electrode opening still rely on the MEMS technology. To address this issue, we demonstrate a simple, rapid, cost-effective, and a complete microfabrication process for flexible and stretchable sensor platforms encompassing conductor formation and patterning to encapsulate and open sensing windows, which only require an economic plotter cutter and readily available supplies. Despite its simplicity, the proposed process could stably create microscale features of 200 µm wide conductor lines and 1 mm window openings, which are in the useful range for various wearable applications. The feasibility of the simple fabrication of multi-functional sensors for various physiological monitoring applications was successfully demonstrated in electrochemical (glucose), electrical (electrocardiogram), mechanical (strain), and thermal (body temperature) modalities.

4.
Clin Case Rep ; 8(7): 1261-1264, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32695371

RESUMEN

Pericardial metastasis from HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) without local recurrence is extremely rare. We report about a 69-year-old man exhibiting pericardial metastasis on positron emission tomography/computed tomography (PET/CT). There are currently no reports on the use of PET/CT in patients with pericardial metastasis from p16-positive OPSCCs.

5.
Mol Imaging Biol ; 20(3): 398-406, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29027077

RESUMEN

PURPOSE: The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. PROCEDURES: A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 105, 1 × 106, and 2 × 106 DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. RESULTS: Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 106 and 2 × 106 cells-injected groups. The highest BLI signal intensity was detected in 2 × 106 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 106 cell-injected group but not in other groups. Optimized cell numbers (2 × 106) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8+ T-cells in the spleen significantly increased, as the number of DC injections increases. CONCLUSIONS: Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.


Asunto(s)
Movimiento Celular , Rastreo Celular , Células Dendríticas/citología , Genes Reporteros , Activación de Linfocitos , Imagen Molecular , Linfocitos T Citotóxicos/inmunología , Animales , Recuento de Células , Línea Celular , Células Dendríticas/metabolismo , Inyecciones , Luciferasas/genética , Luminiscencia , Ratones Endogámicos C57BL , Bazo/inmunología
6.
EJNMMI Res ; 7(1): 32, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28378292

RESUMEN

BACKGROUND: Recently, 18F-tetrafluoroborate (TFB) was used as a substrate for the human sodium/iodide symporter (hNIS) reporter gene. This study evaluated the feasibility of performing molecular-genetic imaging by using the new radiotracer (18F-TFB) for the hNIS gene, to track dendritic cell (DC) migration in live mice. A murine dendritic cell line (DC2.4) co-expressing the hNIS and effluc genes (DC/NF) was established. To confirm the functional cellular expression of both effluc and NIS in the inoculated DC/NF cells by bio-medical imaging, combined bioluminescence imaging (BLI) and 18F-TFB positron emission tomography/computed tomography (PET/CT) imaging was performed after intramuscular injection with parental DCs and DC/NF cells. For DC-tracking, parental DCs or DC/NF cells were injected in the left or right mouse footpad, respectively, and 18F-TFB PET/CT and BLI were performed to monitor these cells in live mice. RESULTS: In vivo PET/CT and BLI showed a clear signal in DC/NF injection sites but not in parental DC injection sites. The signal intensity in DC/NF cells was correlated with time. In vivo 18F-TFB PET/CT imaging showed higher radiotracer activity in the draining popliteal lymph nodes (DPLNs) in DC/NF injection sites than those in DC injection sites on day 2. BLI also showed DC/NF cell migration to the DPLNs on day 2 after the injection. CONCLUSIONS: Migration of DCs to the lymph nodes was successfully monitored using 18F-TFB PET/CT imaging of the NIS gene and optical imaging of the effluc gene in live mice. These data support the feasibility of using 18F-TFB as a substrate for hNIS reporter gene imaging to track the migration of DCs to the lymph nodes in live animals. The use of 18F-TFB may facilitate enhanced PET imaging of the hNIS reporter gene in small animals and humans in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...