Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20027, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414668

RESUMEN

Immunotherapy has a number of advantages over traditional anti-tumor therapy but can cause severe adverse reactions due to an overactive immune system. In contrast, a novel metabolic treatment approach can induce metabolic vulnerability through multiple cancer cell targets. Here, we show a therapeutic effect by inducing nucleotide imbalance and apoptosis in triple negative breast cancer cells (TNBC), by treating with cytosolic thymidylate 5'-phosphohydrolase (CT). We show that a sustained consumption of dTMP by CT could induce dNTP imbalance, leading to apoptosis as tricarboxylic acid cycle intermediates were depleted to mitigate this imbalance. These cytotoxic effects appeared to be different, depending on substrate specificity of the 5' nucleotide or metabolic dependency of the cancer cell lines. Using representative TNBC cell lines, we reveal how the TNBC cells were affected by CT-transfection through extracellular acidification rate (ECAR)/oxygen consumption rate (OCR) analysis and differential transcription/expression levels. We suggest a novel approach for treating refractory TNBC by an mRNA drug that can exploit metabolic dependencies to exacerbate cell metabolic vulnerability.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Timidina Monofosfato , Línea Celular Tumoral , Apoptosis , Monoéster Fosfórico Hidrolasas
2.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165588, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733337

RESUMEN

The cytoplasmic peptide:N-glycanase (Ngly1) is a de-N-glycosylating enzyme that cleaves N-glycans from misfolded glycoproteins and is involved in endoplasmic reticulum-associated degradation. The recent discovery of NGLY1-deficiency, which causes severe systemic symptoms, drew attention to the physiological function of Ngly1 in mammals. While several studies have been carried out to reveal the physiological necessity of Ngly1, the semi-lethal nature of Ngly1-deficient animals made it difficult to analyze its function in adults. In this study, we focus on the physiological function of Ngly1 in liver (hepatocyte)-specific Ngly1-deficient mice generated using the cre-loxP system. We found that hepatocyte-specific Ngly1-deficient mice showed abnormal hepatocyte nuclear size/morphology with aging but did not show other notable defects in unstressed conditions. This nuclear phenotype did not appear to be related to the function of the only gene currently reported to rescue Ngly1-deficient murine lethality so far, endo-ß-N-acetylglucosaminidase. We also found that under a high fructose diet induced stress, the hepatocyte-specific Ngly1-deletion resulted in liver transaminases elevation and increased lipid droplet accumulation. We showed that the processing and localization of the transcription factor, nuclear factor erythroid 2-like 1 (Nfe2l1), was impaired in the Ngly1-deficient hepatocytes. Therefore, Nfe2l1, at least partially, contributes to the phenotypes observed in hepatocyte-specific Ngly1-deficient mice. Our results indicate that Ngly1 plays important roles in the adult liver impacting nuclear morphology and lipid metabolism. Hepatocyte-specific Ngly1-deficient mice could thus serve as a valuable animal model for assessing in vivo efficacy of drugs and/or treatment for NGLY1-deficiency.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Estrés Fisiológico/fisiología , Animales , Línea Celular , Citoplasma/metabolismo , Dieta , Modelos Animales de Enfermedad , Degradación Asociada con el Retículo Endoplásmico/fisiología , Femenino , Fructosa/metabolismo , Glicosilación , Hepatocitos/metabolismo , Masculino , Ratones , Fenotipo
3.
Life Sci Alliance ; 3(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31879337

RESUMEN

Lipid droplets (LDs) are dynamic organelles that store neutral lipids during times of energy excess, such as after a meal. LDs serve as an energy reservoir during fasting and have a buffering capacity that prevents lipotoxicity. Autophagy and the autophagic machinery have been proposed to play a role in LD biogenesis, but the underlying molecular mechanism remains unclear. Here, we show that when nuclear receptor co-repressor 1 (NCoR1), which inhibits the transactivation of nuclear receptors, accumulates because of autophagy suppression, LDs decrease in size and number. Ablation of ATG7, a gene essential for autophagy, suppressed the expression of gene targets of liver X receptor α, a nuclear receptor responsible for fatty acid and triglyceride synthesis in an NCoR1-dependent manner. LD accumulation in response to fasting and after hepatectomy was hampered by the suppression of autophagy. These results suggest that autophagy controls physiological hepatosteatosis by fine-tuning NCoR1 protein levels.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Hígado Graso/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Animales , Ayuno/metabolismo , Ácidos Grasos/biosíntesis , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Gotas Lipídicas/metabolismo , Lipogénesis/genética , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Transfección , Triglicéridos/biosíntesis
5.
Nat Commun ; 10(1): 1567, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952864

RESUMEN

Selective autophagy ensures the removal of specific soluble proteins, protein aggregates, damaged mitochondria, and invasive bacteria from cells. Defective autophagy has been directly linked to metabolic disorders. However how selective autophagy regulates metabolism remains largely uncharacterized. Here we show that a deficiency in selective autophagy is associated with suppression of lipid oxidation. Hepatic loss of Atg7 or Atg5 significantly impairs the production of ketone bodies upon fasting, due to decreased expression of enzymes involved in ß-oxidation following suppression of transactivation by PPARα. Mechanistically, nuclear receptor co-repressor 1 (NCoR1), which interacts with PPARα to suppress its transactivation, binds to the autophagosomal GABARAP family proteins and is degraded by autophagy. Consequently, loss of autophagy causes accumulation of NCoR1, suppressing PPARα activity and resulting in impaired lipid oxidation. These results suggest that autophagy contributes to PPARα activation upon fasting by promoting degradation of NCoR1 and thus regulates ß-oxidation and ketone bodies production.


Asunto(s)
Autofagia , Metabolismo de los Lípidos , Co-Represor 1 de Receptor Nuclear/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/fisiología , Ayuno , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Ratones , Co-Represor 1 de Receptor Nuclear/fisiología , Oxidación-Reducción , PPAR alfa
6.
Nat Commun ; 10(1): 1830, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015433

RESUMEN

There is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2). We then use the selection to affinity-mature a phospho-specific DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these results establish our genetic selection as a useful and potentially generalizable protein engineering tool for studying phospho-specific binding proteins and customizing their affinity and selectivity.


Asunto(s)
Proteínas Portadoras/genética , Ingeniería de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Repetición de Anquirina/genética , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato/genética , beta-Lactamasas/genética
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(6): 907-921, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30905349

RESUMEN

The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders. This review briefly summarizes recent progress in understanding the biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The development and application of specific inhibitors for an individual serine hydrolase, if available, are also described. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.


Asunto(s)
Sistema Nervioso Central/metabolismo , Endocannabinoides/metabolismo , Hidrolasas/metabolismo , Metabolismo de los Lípidos/fisiología , Mamíferos/metabolismo , Serina/metabolismo , Animales , Humanos
8.
FASEB J ; 33(3): 3392-3403, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30383446

RESUMEN

Allergic conjunctivitis (AC) is one of the most common ocular surface diseases in the world. In AC, T helper type 2 (Th2) immune responses play central roles in orchestrating inflammatory responses. However, the roles of lipid mediators in the onset and progression of AC remain to be fully explored. Although previous reports have shown the beneficial effects of supplementation of ω-3 fatty acids in asthma or atopic dermatitis, the underlying molecular mechanisms are poorly understood. In this study, a diet rich in ω-3 fatty acids alleviated AC symptoms in both early and late phases without affecting Th2 immune responses, but rather by altering the lipid mediator profiles. The ω-3 fatty acids completely suppressed scratching behavior toward the eyes, an allergic reaction provoked by itch. Although total serum IgE levels and the expression levels of Th2 cytokines and chemokines in the conjunctiva were not altered by ω-3 fatty acids, eosinophil infiltration into the conjunctiva was dramatically suppressed. The levels of ω-6-derived proinflammatory lipid mediators, including those with chemoattractant properties for eosinophils, were markedly reduced in the conjunctivae of ω-3 diet-fed mice. Dietary ω-3 fatty acids can alleviate a variety of symptoms of AC by altering the lipid mediator profile.-Hirakata, T., Lee, H.-C., Ohba, M., Saeki, K., Okuno, T., Murakami, A., Matsuda, A., Yokomizo, T. Dietary ω-3 fatty acids alter the lipid mediator profile and alleviate allergic conjunctivitis without modulating Th2 immune responses.


Asunto(s)
Conjuntivitis Alérgica/inmunología , Ácidos Grasos Omega-3/inmunología , Lípidos/inmunología , Células Th2/inmunología , Animales , Asma/inmunología , Quimiocinas/inmunología , Citocinas/inmunología , Dieta/métodos , Eicosanoides/inmunología , Eosinófilos/inmunología , Femenino , Inmunoglobulina E/inmunología , Ratones , Ratones Endogámicos BALB C
9.
PLoS One ; 13(7): e0201060, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30021008

RESUMEN

CRM197, which retains the same inflammatory and immune-stimulant properties as diphtheria toxin but with reduced toxicity, has been used as a safe carrier in conjugated vaccines. Expression of recombinant CRM197 in E. coli is limited due to formation of inclusion bodies. Soluble expression attempts in Bacillus subtilis, P. fluorescens, Pichia pastoris, and E. coli were partially unsuccessful or did not generate yields sufficient for industrial scale production. Multiple approaches have been attempted to produce CRM197 in E. coli, which has attractive features such as high yield, simplicity, fast growth, etc., including expression of oxidative host, concurrent expression of chaperones, or periplasmic export. Recently, alternative methods for recovery of insoluble proteins expressed in E. coli were reported. Compared to traditional denaturation/refolding, these methods used the non-denaturing solubilization agent, N-lauroylsarkosine to obtain higher recovery yields of native proteins. Based on this work, here, we focused on solubilization of CRM197 from E. coli inclusion bodies. First, CRM197 was expressed as inclusion bodies by high-level expression of recombinant CRM197 in E. coli (126.8 mg/g dcw). Then bioactive CRM197 was isolated from these inclusion bodies with high yield (108.1 mg/g dcw) through solubilization with N-lauroylsarkosine including Triton X-100 and CHAPS, and purified by Ni-affinity chromatography and size-exclusion chromatography. In this study, we present a cost-effective alternative for the production of bioactive CRM197 and compare our recovery yield with yields in other production processes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Cuerpos de Inclusión/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/química , Clonación Molecular , Expresión Génica , Proteínas Recombinantes/química , Solubilidad
10.
Dis Markers ; 2018: 5280736, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651325

RESUMEN

Irinotecan (CPT-11) is an anticancer prodrug that is activated by the carboxylesterase CES2 and has been approved for the treatment of many types of solid tumors, including colorectal cancer. Recent studies with cell lines show that CES2 expression is regulated by the tumor suppressor protein p53. However, clinical evidence for this regulatory mechanism in cancer is lacking. In this study, we examined the relationship between TP53 gene status and CES2 expression in human colorectal cancer. Most colorectal cancer specimens (70%; 26 of 37) showed lower CES2 mRNA levels (≥1.5-fold lower) than the adjacent normal tissue, and only 30% (12 of 37) showed similar (<1.5-fold lower) or higher CES2 mRNA levels. However, TP53 gene sequencing revealed no relationship between CES2 downregulation and TP53 mutational status. Moreover, while colorectal cancer cells expressing wild-type p53 exhibited p53-dependent upregulation of CES2, PRIMA-1MET, a drug that restores the transcriptional activity of mutant p53, failed to upregulate CES2 expression in cells with TP53 missense mutations. These results, taken together, suggest that CES2 mRNA expression is decreased in human colorectal cancer independently of p53.


Asunto(s)
Carboxilesterasa/genética , Regulación hacia Abajo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Mutación , Análisis de Secuencia de ADN/métodos
11.
Biochem Biophys Res Commun ; 504(3): 576-581, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29534960

RESUMEN

Recent advances in mass spectrometry have expanded our knowledge of lipids and lipid metabolic pathways involved in many (patho)physiological events. Targeted and non-targeted lipidomics are powerful analytical strategies with distinct features, and a combination of these two approaches is often employed to maximize the coverage of lipid species detected and quantified in complex biological matrices. This review briefly summarizes the applications of targeted and non-targeted lipidomics, mainly focusing on electrospray ionization-liquid chromatography-tandem mass spectrometry (ESI-LC-MS/MS), along with recent technical advances in the field. Current limitations and challenges in lipidomics and possible solutions are also discussed.


Asunto(s)
Cromatografía Liquida/métodos , Metabolismo de los Lípidos , Lípidos/análisis , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Redes y Vías Metabólicas , Ratones , Reproducibilidad de los Resultados
12.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R892-R901, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29443549

RESUMEN

Insulin resistance of peripheral muscle is implicated in the etiology of metabolic syndrome in obesity. Although accumulation of glycerolipids, such as triacylglycerol and diacylglycerol (DAG), in muscle contributes to insulin resistance in obese individuals, endurance-trained athletes also have higher glycerolipid levels but normal insulin sensitivity. We hypothesized that the difference in insulin sensitivity of skeletal muscle between athletes and obese individuals stems from changes in fatty acid composition of accumulated lipids. Here, we evaluated the effects of intense endurance exercise and high-fat diet (HFD) on the accumulation and composition of lipid molecular species in rat skeletal muscle using a lipidomic approach. Sprague-Dawley female rats were randomly assigned to three groups and received either normal diet (ND) in sedentary conditions, ND plus endurance exercise training, or HFD in sedentary conditions. Rats were fed ND or HFD between 4 and 12 wk of age. Rats in the exercise group ran on a treadmill for 120 min/day, 5 days/wk, for 8 wk. Soleus muscle lipidomic profiles were obtained using liquid chromatography/tandem mass spectrometry. Total DAG levels, particularly those of palmitoleate-containing species, were increased in muscle by exercise training. However, whereas the total DAG level in the muscle was also increased by HFD, the levels of DAG molecular species containing palmitoleate were decreased by HFD. The concentration of phosphatidylethanolamine molecular species containing palmitoleate was increased by exercise but decreased by HFD. Our results indicate that although DAG accumulation was similar levels in trained and sedentary obese rats, specific changes in molecular species containing palmitoleate were opposite.


Asunto(s)
Composición Corporal/fisiología , Dieta Alta en Grasa/efectos adversos , Diglicéridos/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Animales , Índice de Masa Corporal , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Resistencia a la Insulina , Fosfatidiletanolaminas/metabolismo , Ratas , Ratas Sprague-Dawley , Conducta Sedentaria
13.
Microb Cell Fact ; 16(1): 224, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233137

RESUMEN

BACKGROUND: Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic, specifically proliferating Bifidobacilli and Lactobacilli and enhancing absorption of calcium and magnesium. The use of cellobiose 2-epimerase (CE) is considered an interesting alternative for industrial production of lactulose. CE reversibly converts D-glucose residues into D-mannose residues at the reducing end of unmodified ß-1,4-linked oligosaccharides, including ß-1,4-mannobiose, cellobiose, and lactose. Recently, a few CE 3D structure were reported, revealing mechanistic details. Using this information, we redesigned the substrate binding site of CE to extend its activity from epimerization to isomerization. RESULTS: Using superimposition with 3 known CE structure models, we identified 2 residues (Tyr114, Asn184) that appeared to play an important role in binding epilactose. We modified these residues, which interact with C2 of the mannose moiety, to prevent epimerization to epilactose. We found a Y114E mutation led to increased release of a by-product, lactulose, at 65 °C, while its activity was low at 37 °C. Notably, this phenomenon was observed only at high temperature and more reliably when the substrate was increased. Using Y114E, isomerization of lactose to lactulose was investigated under optimized conditions, resulting in 86.9 g/l of lactulose and 4.6 g/l of epilactose for 2 h when 200 g/l of lactose was used. CONCLUSION: These results showed that the Y114E mutation increased isomerization of lactose, while decreasing the epimerization of lactose. Thus, a subtle modification of the active site pocket could extend its native activity from epimerization to isomerization without significantly impairing substrate binding. While additional studies are required to scale this to an industrial process, we demonstrated the potential of engineering this enzyme based on structural analysis.


Asunto(s)
Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Celobiosa/química , Celobiosa/metabolismo , Bacterias Grampositivas/enzimología , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Calor , Microbiología Industrial/métodos , Isomerismo , Lactosa/genética , Lactosa/metabolismo , Lactulosa/biosíntesis , Lactulosa/química , Lactulosa/metabolismo , Manosa/metabolismo , Oligosacáridos/metabolismo , Prebióticos , Dominios Proteicos , Especificidad por Sustrato
14.
Genom Data ; 6: 63-4, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697335

RESUMEN

DNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013) and its isogenic parent, Escherichia coli BL21(DE3), when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963). Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria.

15.
Appl Environ Microbiol ; 81(22): 7708-19, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319873

RESUMEN

A novel thymidine-producing strain of Escherichia coli was prepared by genome recombineering. Eleven genes were deleted by replacement with an expression cassette, and 7 genes were integrated into the genome. The resulting strain, E. coli HLT013, showed a high thymidine yield with a low deoxyuridine content. DNA microarrays were then used to compare the gene expression profiles of HLT013 and its isogenic parent strain. Based on microarray analysis, the pyr biosynthesis genes and 10 additional genes were selected and then expressed in HLT013 to find reasonable candidates for enhancing thymidine yield. Among these, phage shock protein A (PspA) showed positive effects on thymidine production by diminishing redox stress. Thus, we integrated pspA into the HLT013 genome, resulting in E. coli strain HLT026, which produced 13.2 g/liter thymidine for 120 h with fed-batch fermentation. Here, we also provide a basis for new testable hypotheses regarding the enhancement of thymidine productivity and the attainment of a more complete understanding of nucleotide metabolism in bacteria.


Asunto(s)
Escherichia coli/genética , Redes y Vías Metabólicas , Nucleótidos/metabolismo , Timidina/metabolismo , Ingeniería Genética , Plásmidos/genética
16.
Microb Cell Fact ; 14: 98, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148515

RESUMEN

BACKGROUND: Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis. Based on these findings, we demonstrated rational metabolic engineering strategies capable of producing deoxycytidine. RESULTS: To prepare the deoxycytidine producing strain, we first deleted 3 degradation enzymes in the salvage pathway (deoA, udp, and deoD) and 4 enzymes involved in the branching pathway (dcd, cdd, codA and thyA) to completely eliminate degradation of deoxycytidine. Second, purR, pepA and argR were knocked out to prevent feedback inhibition of CarAB. Third, to enhance influx to deoxycytidine, we investigated combinatorial expression of pyrG, T4 nrdCAB and yfbR. The best strain carried pETGY (pyrG-yfbR) from the possible combinatorial plasmids. The resulting strain showed high deoxycytidine yield (650 mg/L) but co-produced byproducts. To further improve deoxycytidine yield and reduce byproduct formation, pgi was disrupted to generate a sufficient supply of NADPH and ribose. Overall, in shake-flask cultures, the resulting strain produced 967 mg/L of dCyd with decreased byproducts. CONCLUSIONS: We demonstrated that deoxycytidine could be readily achieved by recombineering with biosynthetic genes and regulatory genes, which appeared to enhance the supply of precursors for synthesis of carbamoyl phosphate, based on transcriptome analysis. In addition, we showed that carbon flux rerouting, by disrupting pgi, efficiently improved deoxycytidine yield and decreased byproduct content.


Asunto(s)
Desoxicitidina/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Fermentación
17.
Chem Biol ; 22(7): 928-37, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26120000

RESUMEN

Serine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity. Synthesis of a small library of NHH carbamates and screening by competitive activity-based protein profiling furnished selective, in vivo-active inhibitors and tailored activity-based probes for multiple mammalian serine hydrolases, including palmitoyl protein thioesterase 1, mutations of which cause the human disease infantile neuronal ceroid lipofuscinosis.


Asunto(s)
Carbamatos/farmacología , Inhibidores de Serina Proteinasa/farmacología , Tioléster Hidrolasas/antagonistas & inhibidores , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Serina Endopeptidasas/metabolismo , Tioléster Hidrolasas/metabolismo
18.
Biochemistry ; 54(15): 2539-49, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25853435

RESUMEN

N-Acyl phospholipids are atypical components of cell membranes that bear three acyl chains and serve as potential biosynthetic precursors for lipid mediators such as endocannabinoids. Biochemical studies have implicated ABHD4 as a brain N-acyl phosphatidylethanolamine (NAPE) lipase, but in vivo evidence for this functional assignment is lacking. Here, we describe ABHD4(-/-) mice and their characterization using untargeted lipidomics to discover that ABHD4 regulates multiple classes of brain N-acyl phospholipids. In addition to showing reductions in brain glycerophospho-NAEs (GP-NAEs) and plasmalogen-based lyso-NAPEs (lyso-pNAPEs), ABHD4(-/-) mice exhibited decreases in a distinct set of brain lipids that were structurally characterized as N-acyl lysophosphatidylserines (lyso-NAPSs). Biochemical assays confirmed that NAPS lipids are direct substrates of ABHD4. These findings, taken together, designate ABHD4 as a principal regulator of N-acyl phospholipid metabolism in the mammalian nervous system.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/metabolismo , Lisofosfolipasa/metabolismo , Fosfatidiletanolaminas/metabolismo , Animales , Lisofosfolipasa/clasificación , Lisofosfolipasa/genética , Ratones , Ratones Noqueados , Fosfatidiletanolaminas/genética
19.
Can J Microbiol ; 61(3): 193-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25660398

RESUMEN

Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.


Asunto(s)
Isomaltosa/análogos & derivados , Mutación , Serratia/genética , Serratia/metabolismo , Alginatos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Inmovilizadas/química , Células Inmovilizadas/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Isomaltosa/biosíntesis , Mutagénesis , Serratia/química , Sacarosa/metabolismo
20.
Sci Rep ; 4: 7570, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25531212

RESUMEN

The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 ß-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed ß-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.


Asunto(s)
Aldehído Oxidasa , Escherichia coli , Complejos Multiproteicos , Ingeniería de Proteínas , Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...