Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(3): e11142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469040

RESUMEN

Bitterling fishes evolve an idiosyncratic symbiosis with freshwater mussels, in which they are obligated to spawn in the gills of mussels for reproduction. In recent years, freshwater mussel populations have been drastically diminishing, due to accelerating anthropogenic impacts, which can be large threats to the risk of bitterling's extinction cascade (i.e. 'coextinction'). The host mussel size may be an important factor driving the adaptation and evolution of bitterling's reproductive phenotypes. Here we examined the host size preference and morphological adaptation of female bitterling to the host size from 17 localities at the Han River in Korea. Using our developed molecular-based species identification for bitterling's eggs/larvae inside the mussels, we further determined the spawning patterns of seven bitterling species. Mean length of spawned mussels (N = 453) was significantly larger than that of unspawned mussels (N = 1814), suggesting that bitterling prefers to use larger hosts as a spawning ground. Spawning probability was clearly greater as mussel size increases. Results of our reciprocal transplant experiments do provide some evidence supporting the 'bitterling's larger host preference' hypothesis. Interspecific competition appeared to be intense as two fish species often spawned eggs in the same mussel individuals simultaneously. Longer ovipositor and more elongated egg may evolve in females of Tanakia signifer in response to larger host environments. The observed bitterling's spawning preference for large-sized mussels may evolve perhaps because of the fitness advantage in relation to the offspring survival. Our findings further inform on the development of effective conservation and management strategy for the endangered bitterling fishes.

2.
Animals (Basel) ; 13(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37106914

RESUMEN

Tilapia is an invasive species that has become widely distributed around the world. In Korea, introduced tilapia into its aquatic ecosystem for the first time with a species from Thailand in 1955, and later additionally introduced two more species from Japan and Taiwan, thus securing a total of three species of tilapia (O. niloticus, O. mossambicus and O. aureus) as food resources. Since then, O. niloticus has been reported to inhabit certain streams with thermal effluent outlets. Morphological species identification is very difficult for tilapia and a combined analysis of morphological and molecular-based species identification is therefore necessary. This study investigated a tilapia population that inhabits a thermal effluent stream (Dalseo Stream) in Daegu Metropolitan City, Korea, in order to conduct a morphological and genetic species identification of this population. In total, 37 tilapia individuals were sampled. The results of the morphological and genetic species identification analyses found that two species, O. aureus and O. niloticus, inhabit the Dalseo Stream. In Korea, the habitat of the O. niloticus natural population has been reported, but the O. aureus natural population has not been reported. Thus, we observed for the first time that a new invasive species, O. aureus, inhabits a stream in Korea. They are known to cause disturbances to aquatic organisms (e.g., fish, aquatic insects, plankton, aquatic plants) and the habitat environment (e.g., water quality, bottom structure). Accordingly, it is important to study the ecological effects of O. aureus and O. niloticus on the corresponding freshwater ecosystem closely and to prepare a management plan to prevent the spread of these species, as they are notoriously invasive.

3.
Neurol Sci ; 44(2): 611-619, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36255539

RESUMEN

INTRODUCTION: Studies regarding multiple chronic lacunes (MCLs) and clinical outcome according to stroke etiology are scarce. We sought to evaluate the association between MCL and short-term/long-term clinical outcomes according to stroke etiology. PATIENTS AND METHODS: We analyzed a prospectively collected stroke registry of acute ischemic stroke patients over 4 years. The enrolled patients were classified as having large artery atherosclerosis (LAA), small vessel occlusion (SVO), cardioembolic (CE) stroke, and other etiology. The early neurological deterioration (END) and favorable outcome at 3 months were assessed. RESULTS: A total of 1070 patients were enrolled. Patients with MCL had significantly more END compared to those without MCL both in total population (adjusted odds ratio (OR), 1.7; 95% confidence interval [CI], 1.1-2.5; p = 0.013*) and in the LAA group (adjusted OR, 2.3; 95% CI, 1.3-4.2, p < 0.006). Patients with MCL had a significantly lower OR for favorable outcome at 3 months compared to those without MCL both in total population (adjusted OR, 0.7; 95% CI, 0.5-1.0, p = 0.035) and in the LAA group (adjusted OR, 0.6; 95% CI, 0.3-1.0, p = 0.043). However, MCL was not associated with END or long-term functional outcome in patients with SVO, CE, or other etiology. CONCLUSIONS: The presence of MCL was an independent predictive factor for END as well as long-term poor functional outcome in acute ischemic stroke patients. These associations were only observed in patients with LAA, not in those with SVO, CE, or other etiology.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/epidemiología , Arterias , Isquemia Encefálica/epidemiología , Factores de Riesgo
4.
Evol Appl ; 15(12): 2142-2157, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540643

RESUMEN

Chum salmon (Oncorhynchus keta) is an ecologically and economically important species widely distributed across the North Pacific Ocean. However, the population size of this fishery resource has declined globally. Identifying genetic integrity, diversity and structure, and phylogenetic relationships of wild populations of O. keta over an entire species' range is central for developing its effective conservation and management plans. Nevertheless, chum salmon from the Korean Peninsula, which are comprised of its southwestern range margins, have been overlooked. By using mtDNA control region and 10 microsatellite loci, we here assessed the genetic diversity and structure for 16 populations, including 10 wild and six hatchery populations, encompassing the species entire geographic range in South Korea. The analyses showed that genetic diversity is significantly higher for wild than for hatchery populations. Both marker sets revealed significant genetic differentiation between some local populations. Comparisons of six wild and their respective hatchery populations indicated that allele/haplotype frequencies considerably differ, perhaps due to a strong founder effect and/or homogenizing of hatchery populations for stocking practice. Despite its single admixed gene pool for the Korean chum salmon, some local populations housing their own unique lineages should be accorded with a high priority to safeguard their genetic integrities. The results of our comparative analyses of the Korean population with other North Pacific chum salmons (inhabiting regions of Japan, Russia, and North America) revealed a lower diversity but higher contribution to the overall species-level genetic diversity, and also its unique genetic integrity. These findings advocate for the evolutionary significance of the Korean population for species-level conservation.

5.
Mar Environ Res ; 173: 105544, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34953362

RESUMEN

Large-scale Sargassum blooms have been increasingly observed in coastal zones in recent years. Sargassum horneri (Turner) C. Agardh blooms (pelagic) have been observed in Jeju Island (Korea) and the southwest of the Korean Peninsula, causing serious problems for seaweed and abalone farms as well as for fisheries, tourism and recreational industries. The present study explored the physiological responses of attached and pelagic S. horneri populations cultivated under different nutrient concentrations (HN: 50 µM of nitrogen and 5 µM of phosphorus; LN: 5 µM of nitrogen and 0.5 µM of phosphorus) and photosynthetically active radiation (PAR) (H-PAR: 250; M-PAR: 150; L-PAR: 50 µmol photons m-2 s-1) for 25 days. Relative growth rates (RGR) were significantly lower in the pelagic population than that in the attached population. All thalli from the pelagic population died within 20 days. Chlorophyll a and c, and carotenoids were significantly higher at HN than at LN, and decreased as PAR increased for both populations. For the attached population, photosynthetic rate, tissue nitrogen, and carbon and nitrogen removal were also significantly higher at HN than at LN. These results suggest that high nutrient and lower PAR increased the biomass accumulation of attached populations in coastal areas. Nutrient limitation and high PAR may accelerate senescence of the pelagic populations while traveling on the sea surface from their point of origin.


Asunto(s)
Sargassum , Algas Marinas , Clorofila A , Explotaciones Pesqueras , Nutrientes
6.
Mitochondrial DNA B Resour ; 6(1): 79-81, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33521274

RESUMEN

Mitochondrial genome sequences were first determined and analyzed for a Korean endemic freshwater mussel Nodularia breviconcha (synonym Nodularia douglasiae sinuolatus; Unionidae, Unionida, Bivalvia). The complete mitochondrial genome was 15,741 bp in length, including 13 protein-coding genes (PCGs), 22 tRNA genes, and 2 rRNA genes. The overall GC content of mitochondrial genome for N. breviconcha was 34.3%. Phylogenetic analysis of 18 species within the family Unionidae suggested that Nodularia douglasiae is the most closely related to N. breviconcha. Our study will provide baseline, but important information for future research on ecological and genetic/genomic characteristics of this species.

7.
Anim Cells Syst (Seoul) ; 24(3): 171-179, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33209197

RESUMEN

The long-tailed goral (also called the Amur goral) Naemorhedus caudatus (subfamily Caprinae), a vulnerable and protected species designated by IUCN and CITES, has sharply been declining in the population size and is now becoming critically endangered in South Korea. This species has been conserved as a natural monument by the Korean Cultural Heritage Administration since 1968. In this study, using 78 fecal DNA samples with a non-invasive genetic approach, we assessed the genetic integrity and individual identification-based population size for the goral population from Seoraksan National Park representing the largest wild population in Korea. Using the successfully isolated 38 fecal DNA, phylogeographic and population genetic analyses were performed with mitochondrial DNA control region (CR) sequences and nine microsatellite loci. We found seven CR haplotypes, of which five were unique to the Seoraksan population, considering previously determined haplotypes in Korean populations. The Seoraksan population showed higher haplotype diversity (0.777 ± 0.062) and mean number of alleles (4.67 ± 1.563) relative to southern populations in Korea reported from previous studies, with no signal of a population bottleneck. Microsatellite-based individual identification estimate based on probability of identity (PID) indicated a population size of ≥30 in this population. Altogether, we suggest that for future management efforts of this species in the Seoraksan National Park, conserving its genetic integrity as an 'endemic' lineage, and curbing a decrease in its number through mitigating habitat destruction might be key to secure the population for the long term.

8.
Sci Rep ; 10(1): 11854, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678257

RESUMEN

To determine the distribution of dissolved organic matter (DOM) in the East China Sea (ECS) during the summer, we measured the dissolved organic carbon (DOC) and nitrogen (DON), fluorescent dissolved organic matter (FDOM), and chlorophyll a (Chl. a) in the upper 100-m layer of this region during July and September 2015. The DOC (r2 = 0.72 and 0.78 in July and September, respectively) and DON (r2 = 0.43 and 0.33) were significantly correlated with salinity, suggesting that the river is the primary origin of DOM. However, we found that at a DOC "pulse" under a salinity ranging from 24 to 35, the extrapolating DOC values (304 ± 11 µM) were twice higher than those with a salinity of close to 0, as found in a previous study. The excess DOC concentration seemed to be attributed to the microbial metabolism during transport from the estuary based on the good relationships between DOC and marine humic-like FDOM (r2 = 0.42 and 0.47), as well as the fluorescence, humification, and biological indexes, but showed no correlation with Chl. a. Thus, the results of our study indicate that microbial activities can be a significant factor controlling the distribution of DOM in the ECS during summer.

9.
PLoS One ; 14(7): e0219958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31335918

RESUMEN

Species diversity in the genus Ulva remains understudied worldwide. Using molecular analyses we investigated the species composition, diversity, distribution, and relative frequencies of the genus Ulva along the entire coast of Jeju Island, off the southern tip of Korea. Species identification was performed for 215 samples collected from 23 sites, based on comprehensive phylogenetic and model-based species delimitation analyses using the sequences of two molecular markers, chloroplast elongation factor Tu (tufA) and nuclear rDNA internal transcribed spacer (ITS). We identified 193 specimens as nine Ulva species, 14 specimens as Blidingia spp., and eight samples undetermined, based on the combined analysis of tufA and ITS phylogenies. Two model-based approaches generally supported nine groups of Ulva species. Previously documented species complex, such as U. ohnoi-U. spinulosa and U. procera-U. linza showed discordant relationships between the two phylogenies. The occurrence of U. torta on Jeju Island was first observed, despite its existence on the mainland previously reported. Ulva australis [16 of 23 sites; 34.4% (relative frequency)], U. ohnoi (16; 21.9%), and U. procera (11; 14%) were found to be the predominant species. Our study highlights that molecular analysis is critical for species delimitation in the genus Ulva and provides fundamental information for an understanding of green-tide assemblages on the "biological hotspot" coastal ecosystem, Jeju Island in Korea. This study will also help to monitor and manage local green tides at the areas that are currently encountering rapid climate changes.


Asunto(s)
Biodiversidad , Filogenia , Ulva/genética , Proteínas de Cloroplastos/genética , Factores de Elongación de Péptidos/genética , República de Corea , Ulva/clasificación
10.
Sci Rep ; 9(1): 7757, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123297

RESUMEN

In recent years, drifting and inundating brown seaweed (Sargassum horneri) biomass, called 'golden tides', has frequently drifted and accumulated along the southern coastlines of Korea, causing devastating impacts on the local economy and coastal ecosystems. In this study, based on combined analyses of mitochondrial DNA cox3 gene and seven microsatellites, we investigated the genetic makeup of the floating S. horneri populations (N = 14) in comparison to Korean benthic populations (N = 5), and tracked their genetic sources. Given a shared mtDNA haplotype and oceanic circulation systems, the floating populations may have been originated from the southeastern coast of China (e.g. Zhoushan, Zhejiang province). Population structure analyses with microsatellites revealed two distinct genetic clusters, each comprising floating and benthic populations. High levels of inter-population differentiation were detected within Korean benthic samples. The floating populations from the same periods during a 2015-2018 year were genetically more different from one another than those from different periods. These results suggest that the floating populations might be of multiple genetic sources within geographic origin(s). This study will inform management efforts including the development of "S. horneri blooming forecasting system", which will assist in mitigating ecological and economic damages on the Korean coastal ecosystems in the future.


Asunto(s)
ADN Mitocondrial/genética , Sargassum/genética , Sargassum/metabolismo , Biomasa , China , Ecosistema , Genética de Población/métodos , Haplotipos/genética , Repeticiones de Microsatélite/genética , Océanos y Mares , República de Corea , Algas Marinas/genética
11.
BMC Evol Biol ; 18(1): 52, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29642844

RESUMEN

BACKGROUND: Life history characteristics are considered important factors influencing the evolutionary processes of natural populations, including the patterns of population genetic structure of a species. The sister species Cottus hangiongensis and C. koreanus are small bottom-dwelling freshwater sculpin fishes from South Korea that display marked life history divergence but are morphologically nearly indistinguishable. Cottus hangiongensis evolved an 'amphidromous' life history with a post-hatching pelagic larval phase. They spawn many small eggs in the low reaches of rivers, and hatched larvae migrate to the sea before returning to grow to maturity in the river mouth. In contrast, C. koreanus evolved a 'fluvial' landlocked type with benthic larvae. They release a smaller number of larger eggs, and the larvae undergo direct development, remaining benthic in the upstream rivers throughout their entire lives. We tested whether there were differences in patterns and levels of within-population genetic diversities and spatial population structure between the two closely related Korean sculpins using mitochondrial DNA control region sequences and seven nuclear microsatellite loci. RESULTS: The combined analyses of both marker sets revealed that C. hangiongensis harboured considerably higher levels of within-population genetic diversities (e.g. haplotype/allelic richness, heterozygosities) than C. koreanus. In contrast, the fluvial sculpin exhibited noticeably more spatial population structure than did the amphidromous sculpin, as suggested by pairwise FST statistics. The finding that C. hangiongensis individuals comprised a single random mating population across the east-flowing river basins in the Korean Peninsula, whereas C. koreanus individuals comprised genetically discrete individual populations, was further supported by an individual-based Bayesian population assignment and also factorial correspondence analyses. CONCLUSIONS: The higher genetic diversity, but lower population structure, of the amphidromous sculpin relative to the fluvial sculpin may have resulted from its greater larval dispersal and also possibly, higher fecundity accompanied by an amphidromous life history. Hence, we conclude that contrasting early life histories - including the presence or absence of the pelagic larval phase - may have led to divergent patterns of within-population genetic diversities and spatial population structure between the sister Cottus species following speciation from a common ancestor of marine sculpin.


Asunto(s)
Variación Genética , Perciformes/clasificación , Perciformes/genética , Animales , Teorema de Bayes , Evolución Biológica , ADN Mitocondrial/genética , Genética de Población , Larva/genética , Repeticiones de Microsatélite , Filogenia , República de Corea , Ríos
12.
Genome Biol Evol ; 9(11): 3122-3136, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069363

RESUMEN

Lateralized behavior ("handedness") is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior-biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain.


Asunto(s)
Encéfalo/fisiología , Cíclidos/fisiología , Lateralidad Funcional , Animales , Encéfalo/anatomía & histología , Cíclidos/anatomía & histología , Cíclidos/genética , Conducta Alimentaria , Perfilación de la Expresión Génica , Transcriptoma
13.
PLoS One ; 12(3): e0174105, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28323864

RESUMEN

Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name "eelgrass") is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061-0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern tip of the Korean Peninsula, for this ecologically important species.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Flujo Génico/genética , Variación Genética/genética , Genética de Población , Zosteraceae/genética , Ecosistema , Flujo Genético , Calentamiento Global , Repeticiones de Microsatélite/genética , República de Corea
14.
Artículo en Inglés | MEDLINE | ID: mdl-28134828

RESUMEN

The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.


Asunto(s)
Bacterias/genética , Cambio Climático , Ecosistema , Sedimentos Geológicos/microbiología , Actividades Humanas , Agua de Mar/microbiología , Monitoreo del Ambiente , Humanos , Metagenómica , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN
15.
Ecol Evol ; 6(9): 2843-53, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27217943

RESUMEN

Alloparental care - care for unrelated young - is rare in animals, and its ecological or evolutionary advantages or, alternative maladaptive nature, remain unclear. We investigate alloparental care in the socially monogamous cichlid fish Perissodus microlepis from Lake Tanganyika that exhibits bi-parental care. In a genetic parentage analysis, we discovered a surprisingly high percentage of alloparental care represented by brood mixing, extra-pair paternity and extra-pair maternity in all broods that we investigated. The percentage of nondescendant juveniles of other parents, i.e., brood mixing, ranged from 5% to 57% (mean = 28%). The distribution of genetic parentage also suggests that this socially monogamous species has, in fact, polygamous mating system. The prevalence of genetically mixed broods can be best explained by two, not mutually exclusive hypotheses on farming-out and fostering behaviors. In the majority of broods, the sizes of the parents' own (descendant) offspring were significantly larger than those of the adopted (nondescendant) juveniles, supporting the 'selfish shepherd effect' hypothesis, i.e., that foster parents preferentially accept unrelated "smaller or not larger" young since this would tend to lower the predation risks for their own larger offspring. There was also a tendency for larger parents particularly mothers, more so than smaller parents, to care predominantly for their own offspring. Larger parents might be better at defending against cuckoldry and having foreign young dumped into their broods through farming-out behavior. This result might argue for maladaptive effects of allopatric care for the foster parents that only larger and possibly more experienced pairs can guard against. It needs to be determined why, apparently, the ability to recognize one's own young has not evolved in this species.

16.
Ecol Evol ; 5(19): 4277-86, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26664678

RESUMEN

The scale-eating cichlid fish, Perissodus microlepis, from Lake Tanganyika are a well-known example of an asymmetry dimorphism because the mouth/head is either left-bending or right-bending. However, how strongly its pronounced morphological laterality is affected by genetic and environmental factors remains unclear. Using quantitative assessments of mouth asymmetry, we investigated its origin by estimating narrow-sense heritability (h (2) ) using midparent-offspring regression. The heritability estimates [field estimate: h (2)  = 0.22 ± 0.06, P = 0.013; laboratory estimate: h (2)  = 0.18 ± 0.05, P = 0.004] suggest that although variation in laterality has some additive genetic component, it is strongly environmentally influenced. Family-level association analyses of a putative microsatellite marker that was claimed to be linked to gene(s) for laterality revealed no association of this locus with laterality. Moreover, the observed phenotype frequencies in offspring from parents of different phenotype combinations were not consistent with a previously suggested single-locus two-allele model, but they neither were able to reject with confidence a random asymmetry model. These results reconcile the disputed mechanisms for this textbook case of mouth asymmetry where both genetic and environmental factors contribute to this remarkable case of morphological asymmetry.

18.
PLoS One ; 10(7): e0129715, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26171966

RESUMEN

The present-day genetic structure of a species reflects both historical demography and patterns of contemporary gene flow among populations. To precisely understand how these factors shape current population structure of the northwestern (NW) Pacific marine gastropod, Thais clavigera, we determined the partial nucleotide sequences of the mitochondrial COI gene for 602 individuals sampled from 29 localities spanning almost the whole distribution of T. clavigera in the NW Pacific Ocean (~3,700 km). Results from population genetic and demographic analyses (AMOVA, ΦST-statistics, haplotype networks, Tajima's D, Fu's FS, mismatch distribution, and Bayesian skyline plots) revealed a lack of genealogical branches or geographical clusters, and a high level of genetic (haplotype) diversity within each of studied population. Nevertheless, low but significant genetic structuring was detected among some geographical populations separated by the Changjiang River, suggesting the presence of geographical barriers to larval dispersal around this region. Several lines of evidence including significant negative Tajima's D and Fu's FS statistics values, the unimodally shaped mismatch distribution, and Bayesian skyline plots suggest a population expansion at marine isotope stage 11 (MIS 11; 400 ka), the longest and warmest interglacial interval during the Pleistocene epoch. The lack of genetic structure among the great majority of the NW Pacific T. clavigera populations may be attributable to high gene flow by current-driven long-distance dispersal of prolonged planktonic larval phase of this species.


Asunto(s)
Distribución Animal , Gastrópodos/genética , Gastrópodos/fisiología , Animales , Teorema de Bayes , Flujo Génico , Variación Genética , Océano Pacífico , Filogeografía , Dinámica Poblacional
19.
Mycobiology ; 43(1): 75-80, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25892919

RESUMEN

We identified single nucleotide polymorphism (SNP) markers in the laccase gene to establish a line-diagnostic system for shiitake mushrooms. A total of 89 fungal isolates representing four lines, including Korean registered, Korean wild type, Chinese, and Japanese lines, were analyzed. The results suggest that SNP markers in the laccase gene can be useful for line typing in shiitake mushrooms.

20.
Mol Ecol ; 23(21): 5224-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25039588

RESUMEN

The genetic dissection of naturally occurring phenotypes sheds light on many fundamental and longstanding questions in speciation and adaptation and is a central research topic in evolutionary biology. Until recently, forward-genetic approaches were virtually impossible to apply to nonmodel organisms, but the development of next-generation sequencing techniques eases this difficulty. Here, we use the ddRAD-seq method to map a colour trait with a known adaptive function in cichlid fishes, well-known textbook examples for rapid rates of speciation and astonishing phenotypic diversification. A suite of phenotypic key innovations is related to speciation and adaptation in cichlids, among which body coloration features prominently. The focal trait of this study, horizontal stripes, evolved in parallel in several cichlid radiations and is associated with piscivorous foraging behaviour. We conducted interspecific crosses between Haplochromis sauvagei and H. nyererei and constructed a linkage map with 867 SNP markers distributed on 22 linkage groups and total size of 1130.63 cM. Lateral stripes are inherited as a Mendelian trait and map to a single genomic interval that harbours a paralog of a gene with known function in stripe patterning. Dorsolateral and mid-lateral stripes were always coinherited and are thus under the same genetic control. Additionally, we directly quantify the genotyping error rates in RAD markers and offer guidelines for identifying and dealing with errors. Uncritical marker selection was found to severely impact linkage map construction. Fortunately, by applying appropriate quality control steps, a genotyping accuracy of >99.9% can be reached, thus allowing for efficient linkage mapping of evolutionarily relevant traits.


Asunto(s)
Mapeo Cromosómico/métodos , Cíclidos/genética , Pigmentación/genética , Animales , Cruzamientos Genéticos , Evolución Molecular , Femenino , Genotipo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...