Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Anal Biochem ; 507: 40-6, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235170

RESUMEN

The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid-base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na(+)]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na(+)]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye-ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na(+)]i, whereas no significant differences in branchial [Na(+)]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na(+)]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms.


Asunto(s)
Branquias/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Osmeriformes/metabolismo , Sodio/metabolismo , Animales , Supervivencia Celular , Branquias/citología , Transporte Iónico , Iones/metabolismo , Factores de Tiempo
3.
Aquat Toxicol ; 174: 199-207, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26966874

RESUMEN

The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200µgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters.


Asunto(s)
Cobre/toxicidad , Osmeriformes/fisiología , Salinidad , Aclimatación , Amoníaco/metabolismo , Animales , Cobre/metabolismo , Agua Dulce , Homeostasis/efectos de los fármacos , Nueva Zelanda , Agua de Mar , Sodio/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
Aquat Toxicol ; 99(1): 65-72, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20434226

RESUMEN

Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Cobre/toxicidad , Agua Dulce , Salinidad , Agua de Mar , Contaminantes Químicos del Agua/toxicidad , Equilibrio Hidroelectrolítico/fisiología , Animales , Organismos Acuáticos/metabolismo , Organismos Acuáticos/fisiología , Braquiuros/efectos de los fármacos , Braquiuros/fisiología , Cobre/metabolismo , Relación Dosis-Respuesta a Droga , Hemocianinas/metabolismo , Hemolinfa/metabolismo , Modelos Biológicos , Factores de Tiempo , Contaminantes Químicos del Agua/metabolismo , Equilibrio Hidroelectrolítico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...