Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Micromachines (Basel) ; 15(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38793194

RESUMEN

We investigated the impact of surface treatments on Si-based electrolyte-gated transistors (EGTs) for detecting urea. Three types of EGTs were fabricated with distinct gate electrodes (Ag, Au, Pt) using a top-down method. These EGTs exhibited exceptional intrinsic electrical properties, including a low subthreshold swing of 80 mV/dec, a high on/off current ratio of 106, and negligible hysteresis. Three surface treatment methods ((3-amino-propyl) triethoxysilane (APTES) and glutaraldehyde (GA), 11-mercaptoundecanoic acid (11-MUA), 3-mercaptopropionic acid (3-MPA)) were individually applied to the EGTs with different gate electrodes (Ag, Au, Pt). Gold nanoparticle binding tests were performed to validate the surface functionalization. We compared their detection performance of urea and found that APTES and GA exhibited the most superior detection characteristics, followed by 11-MUA and 3-MPA, regardless of the gate metal. APTES and GA, with the highest pKa among the three surface treatment methods, did not compromise the activity of urease, making it the most suitable surface treatment method for urea sensing.

2.
Zebrafish ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748396

RESUMEN

Various methods have been used in rodents to evaluate learning and memory. Although much less frequently used, the zebrafish emerges as an alternative model organism in this context. For example, it allows assessing potential behavioral deficits because of neurodevelopmental disorders or environmental neurotoxins. A variety of learning tasks have been employed in previous studies that required extensive habituation and training sessions. Here, we introduce a simpler and faster method to evaluate learning and memory of zebrafish with minimum habituation. A new apparatus, a transparent L-shaped tube, was developed in which we trained each zebrafish to swim through a long arm and measured the time to swim through this arm. We demonstrate that in this task, zebrafish could acquire both short-term (1 h) and long-term memory (4 days). We also studied learning and memory of a gene knockout (KO) zebrafish that showed social impairments related to autism. We found KO mutant zebrafish to show a quantitative impairment in habituation, learning, and memory performance compared with wild-type control fish. In conclusion, we established a novel learning apparatus and sensitive paradigm that allowed us to evaluate learning and memory of adult zebrafish that required only a brief habituation period and minimal training.

3.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675292

RESUMEN

In this study, we investigated the influence of quasi-one-dimensional (Quasi-1D) characteristics on the source and drain contact resistances within vertical nanowire (NW) field-effect transistors (FETs) of diminutive diameter. The top contact of the NW is segregated into two distinct regions: the first encompassing the upper surface, designated as the axial contact, and the second encircling the side surface, known as the radial contact, which is formed during the top-contact metal deposition process. Quantum confinement effects, prominent within Quasi-1D NWs, exert significant constraints on radial transport, consequently inducing a noticeable impact on contact resistance. Notably, in the radial direction, electron tunneling occurs only through quantized, discrete energy levels. Conversely, along the axial direction, electron tunneling freely traverses continuous energy levels. In a meticulous numerical analysis, these disparities in transport mechanisms unveiled that NWs with diameters below 30 nm exhibit a markedly higher radial contact resistance compared to their axial counterparts. Furthermore, an increase in the overlap length (less than 5 nm) contributes to a modest reduction in radial resistance; however, it remains consistently higher than the axial contact resistance.

4.
Biosensors (Basel) ; 14(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38534231

RESUMEN

The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection (LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity, respectively. To analyze the sensing responses of EGT in detecting the aptamer-SARS-CoV-2 spike protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential and an effective capacitance of the functionalized layer component was employed. The aptamer-functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution. These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2 spike proteins.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Electrólitos , Oligonucleótidos
5.
ACS Appl Mater Interfaces ; 16(9): 11147-11158, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407048

RESUMEN

The interferon-λ (IFN-λ)-regulated innate immune responses in the airway expand our understanding toward antiviral strategies against influenza A virus (IAV). The application of IFN-λ as mucosal antiviral therapeutic is still challenging, and advanced research will be necessary to achieve more efficient delivery of recombinant IFN-λs to the damaged respiratory mucosa. In this study, we examine the capability of IFN-λ to stimulate the innate immune response, promoting the swift elimination of IAV in the lungs. Additionally, we develop IFN-λ-loaded nanoparticles incorporated into pulmonary surfactant for inhalation therapy aimed at treating lung infections caused by IAV. We found that inhaled delivery of IFNλ-PSNPs significantly restricted IAV replication in the lungs from 3 days after infection (dpi), and IAV-caused lung histopathologic findings were completely improved in response to IFNλ-PSNPs. More significant and rapid attenuation of viral RNA was observed in the lung of mice with inhaled delivery of IFNλ-PSNPs compared to mice with recombinant IFN-λs. Inhalation treatment of IFNλ-PSNPs to IAV-infected mice can result in the increase of monocyte frequency in concert with restoration of T and B cells composition. Furthermore, the transcriptional profiles of monocytes shifted toward heightened IFN responses following IFNλ-PSNP treatment. These results imply that IFN-λ could serve as a robust inducer of innate immunity in the lungs against IAV infection, and inhalation of IFN-λs encapsulated in PSNPs effectively resolves lung infections caused by IAV through rapid viral clearance. PSNPs facilitated improved delivery of IFN-λs to the lungs, triggering potent antiviral immune responses upon IAV infection onset.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Surfactantes Pulmonares , Animales , Ratones , Humanos , Interferón lambda , Inmunidad Innata/genética , Pulmón/patología
6.
Mol Ther Methods Clin Dev ; 32(1): 101202, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38374964

RESUMEN

The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.

7.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38138368

RESUMEN

Electrical characteristics with various program temperatures (TPGM) in three-dimensional (3-D) NAND flash memory are investigated. The cross-temperature conditions of the TPGM up to 120 °C and the read temperature (TREAD) at 30 °C are used to analyze the influence of grain boundaries (GB) on the bit line current (IBL) and threshold voltage (VT). The VT shift in the E-P-E pattern is successfully decomposed into the charge loss (ΔVT,CL) component and the poly-Si GB (ΔVT,GB) component. The extracted ΔVT,GB increases at higher TPGM due to the reduced GB potential barrier. Additionally, the ΔVT,GB is evaluated using the Technology Computer Aided Design (TCAD) simulation, depending on the GB position (XGB) and the bit line voltage (VBL).

8.
Micromachines (Basel) ; 14(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38004865

RESUMEN

The instability in threshold voltage (VTH) and charge distributions in noncircular cells of three-dimensional (3D) NAND flash memory are investigated. Using TCAD simulation, we aim to identify the main factors influencing the VTH of noncircular cells. The key focus is on the nonuniform trapped electron density in the charge trapping layer (CTL) caused by the change in electric field between the circular region and the spike region. There are less-trapped electron (LT) regions within the CTL of programmed noncircular cells, which significantly enhances current flow. Remarkably, more than 50% of the total current flows through these LT regions when the spike size reaches 15 nm. We also performed a comprehensive analysis of the relationship between charge distribution and VTH in two-spike cells with different heights (HSpike) and angles between spikes (θ). The results of this study demonstrate the potential to improve the reliability of next-generation 3D NAND flash memory.

9.
BMB Rep ; 56(9): 496-501, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37748761

RESUMEN

Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth. [BMB Reports 2023; 56(9): 496-501].


Asunto(s)
Condrocitos , Factor 2 Relacionado con NF-E2 , Animales , Pez Cebra , Diferenciación Celular , Mamíferos
10.
ACS Appl Mater Interfaces ; 15(34): 40191-40200, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37603713

RESUMEN

The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Silicio , Anticuerpos , Microscopía Fluorescente
11.
Environ Pollut ; 334: 122108, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422083

RESUMEN

Mixtures of chlorinated persistent organic pollutants (C-POPs-Mix) are chemically related risk factors for type 2 diabetes mellitus (T2DM); however, the effects of chronic exposure to C-POPs-Mix on microbial dysbiosis remain poorly understood. Herein, male and female zebrafish were exposed to C-POPs-Mix at a 1:1 ratio of five organochlorine pesticides and Aroclor 1254 at concentrations of 0.02, 0.1, and 0.5 µg/L for 12 weeks. We measured T2DM indicators in blood and profiled microbial abundance and richness in the gut as well as transcriptomic and metabolomic alterations in the liver. Exposure to C-POPs-Mix significantly increased blood glucose levels while decreasing the abundance and alpha diversity of microbial communities only in females at concentrations of 0.02 and 0.1 µg/L. The majorly identified microbial contributors to microbial dysbiosis were Bosea minatitlanensis, Rhizobium tibeticum, Bifidobacterium catenulatum, Bifidobacterium adolescentis, and Collinsella aerofaciens. PICRUSt results suggested that altered pathways were associated with glucose and lipid production and inflammation, which are linked to changes in the transcriptome and metabolome of the zebrafish liver. Metagenomics outcomes revealed close relationships between intestinal and liver disruptions to T2DM-related molecular pathways. Thus, microbial dysbiosis in T2DM-triggered zebrafish occurred as a result of chronic exposure to C-POPs-Mix, indicating strong host-microbiome interactions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Contaminantes Ambientales , Microbioma Gastrointestinal , Microbiota , Animales , Masculino , Femenino , Diabetes Mellitus Tipo 2/metabolismo , Pez Cebra/metabolismo , Contaminantes Orgánicos Persistentes/metabolismo , Contaminantes Orgánicos Persistentes/farmacología , Disbiosis/inducido químicamente , Disbiosis/microbiología , Contaminantes Ambientales/metabolismo
12.
Cell Host Microbe ; 31(6): 1021-1037.e10, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37269833

RESUMEN

Commensal bacteria are critically involved in the establishment of tolerance against inflammatory challenges, the molecular mechanisms of which are just being uncovered. All kingdoms of life produce aminoacyl-tRNA synthetases (ARSs). Thus far, the non-translational roles of ARSs have largely been reported in eukaryotes. Here, we report that the threonyl-tRNA synthetase (AmTARS) of the gut-associated bacterium Akkermansia muciniphila is secreted and functions to monitor and modulate immune homeostasis. Secreted AmTARS triggers M2 macrophage polarization and orchestrates the production of anti-inflammatory IL-10 via its unique, evolutionary-acquired regions, which mediates specific interactions with TLR2. This interaction activates the MAPK and PI3K/AKT signaling pathways, which converge on CREB, leading to an efficient production of IL-10 and suppression of the central inflammatory mediator NF-κB. AmTARS restores IL-10-positive macrophages, increases IL-10 levels in the serum, and attenuates the pathological effects in colitis mice. Thus, commensal tRNA synthetases can act as intrinsic mediators that maintain homeostasis.


Asunto(s)
Treonina-ARNt Ligasa , Animales , Ratones , Treonina-ARNt Ligasa/metabolismo , Interleucina-10/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Verrucomicrobia/metabolismo , Homeostasis , ARN de Transferencia/metabolismo
13.
Nat Immunol ; 24(8): 1308-1317, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365384

RESUMEN

Virtual memory T (TVM) cells are a T cell subtype with a memory phenotype but no prior exposure to foreign antigen. Although TVM cells have antiviral and antibacterial functions, whether these cells can be pathogenic effectors of inflammatory disease is unclear. Here we identified a TVM cell-originated CD44super-high(s-hi)CD49dlo CD8+ T cell subset with features of tissue residency. These cells are transcriptionally, phenotypically and functionally distinct from conventional CD8+ TVM cells and can cause alopecia areata. Mechanistically, CD44s-hiCD49dlo CD8+ T cells could be induced from conventional TVM cells by interleukin (IL)-12, IL-15 and IL-18 stimulation. Pathogenic activity of CD44s-hiCD49dlo CD8+ T cells was mediated by NKG2D-dependent innate-like cytotoxicity, which was further augmented by IL-15 stimulation and triggered disease onset. Collectively, these data suggest an immunological mechanism through which TVM cells can cause chronic inflammatory disease by innate-like cytotoxicity.


Asunto(s)
Alopecia Areata , Linfocitos T CD8-positivos , Humanos , Interleucina-15 , Memoria Inmunológica , Subgrupos de Linfocitos T
14.
Nat Commun ; 14(1): 3668, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339951

RESUMEN

Osteoporosis is a condition characterized by decreased bone mineral density (BMD) and reduced bone strength, leading to an increased risk of fractures. Here, to identify novel risk variants for susceptibility to osteoporosis-related traits, an exome-wide association study is performed with 6,485 exonic single nucleotide polymorphisms (SNPs) in 2,666 women of two Korean study cohorts. The rs2781 SNP in UBAP2 gene is suggestively associated with osteoporosis and BMD with p-values of 6.1 × 10-7 (odds ratio = 1.72) and 1.1 × 10-7 in the case-control and quantitative analyzes, respectively. Knockdown of Ubap2 in mouse cells decreases osteoblastogenesis and increases osteoclastogenesis, and knockdown of ubap2 in zebrafish reveals abnormal bone formation. Ubap2 expression is associated with E-cadherin (Cdh1) and Fra1 (Fosl1) expression in the osteclastogenesis-induced monocytes. UBAP2 mRNA levels are significantly reduced in bone marrow, but increased in peripheral blood, from women with osteoporosis compared to controls. UBAP2 protein level is correlated with the blood plasma level of the representative osteoporosis biomarker osteocalcin. These results suggest that UBAP2 has a critical role in bone homeostasis through the regulation of bone remodeling.


Asunto(s)
Fracturas Óseas , Osteoporosis , Animales , Femenino , Ratones , Densidad Ósea/genética , Fracturas Óseas/genética , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Pez Cebra
15.
Biosensors (Basel) ; 13(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37232926

RESUMEN

We experimentally demonstrate Si-based electrolyte-gated transistors (EGTs) for detecting urea. The top-down-fabricated device exhibited excellent intrinsic characteristics, including a low subthreshold swing (SS) (~80 mV/dec) and a high on/off current ratio (~107). The sensitivity, which varied depending on the operation regime, was analyzed with the urea concentrations ranging from 0.1 to 316 mM. The current-related response could be enhanced by reducing the SS of the devices, whereas the voltage-related response remained relatively constant. The urea sensitivity in the subthreshold regime was as high as 1.9 dec/pUrea, four times higher than the reported value. The extracted power consumption of 0.3 nW was extremely low compared to other FET-type sensors.


Asunto(s)
Electrólitos , Urea
16.
Chemosphere ; 330: 138723, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37084899

RESUMEN

The size of microplastics (MPs) plays an important role in combined toxic effects including synergistic or antagonistic effects. However, the influence of the size of MPs on the combined toxicity of contaminants remains unclear. In this study, we employed a zebrafish model to investigate the effects of MP size on the combined toxicity of benz[a]anthracene (BaA), a representative polyaromatic hydrocarbon, using three different sizes of polystyrene MPs (PSMPs) (0.2, 1.0, and 10 µm). Treatment of all groups did not result in any mortality of the zebrafish larvae. However, small-sized PSMPs (0.2 µm) enhanced the toxic effect of BaA in larvae such as cardiac defect and disruption of vessel formation. Medium-sized PSMPs (1.0 µm) were boundary in terms of the combined toxic effect; however, large-sized PSMPs (10 µm) alleviated the cardiotoxicity of BaA, including cardiac defect, ROS levels, and cell death. The combined effects showed a correlation with the body burden of MPs and BaA in larvae according to particle size (in the order of 0.2 µm > 1.0 µm > 10 µm). The synergistic effects occurred likely because the small PSMPs facilitated the body burden of BaA, induced excessive ROS by Ahr-mediated activity, and caused cell death in the heart, resulting in increased heart defects in the larvae. In contrast, large PSMPs abated the combined toxic effect through decreased body burden, whereas medium PSMPs form a boundary in combined effects. Therefore, the combined toxic effects of MPs are dependent on their size, which plays an important role in the transport and accumulation of environmental pollutants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Pez Cebra/metabolismo , Plásticos/toxicidad , Larva , Cardiotoxicidad , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Antracenos/toxicidad , Antracenos/metabolismo
17.
Talanta ; 255: 124203, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565526

RESUMEN

A one-step immunoassay based on filtration was presented, which used microbeads for target analyte detection and filters with appropriate pore sizes to distinguish the complexity of target analyte and microbeads. For effective bacterial detection, the microbead size and the filter's pore size must be optimized. The optimal concentrations of the enzyme (urease) and antibody were determined at the maximum absorbance change, that is, the maximum pH change. The pH change was measured using a field-effect transistor (FET). The correlation between pH change and threshold voltage was estimated to be 21.7 mV/pH, and the correlation between pH change and the source-drain current was estimated to be -379 nA/pH. For the one-step immunoassay, antibodies against target bacteria were isolated from horse serum by filtration, and these antibodies were estimated to have a sufficiently high specificity to overcome cross-reactivity among five types of food poisoning-related bacteria: Escherichia coli O157, Salmonella typhimurium, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. Finally, the FET-based one-step immunoassay was demonstrated for five types of food poisoning-related bacteria in human serum.


Asunto(s)
Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos , Humanos , Inmunoensayo , Salmonella typhimurium , Bacterias , Enfermedades Transmitidas por los Alimentos/diagnóstico , Anticuerpos , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis
18.
Sci Adv ; 8(43): eabk1239, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306352

RESUMEN

Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Animales , Reprogramación Celular/genética , Desmoplaquinas/genética , Pez Cebra , Mamíferos
19.
Artículo en Inglés | MEDLINE | ID: mdl-35940544

RESUMEN

Nanomaterials have been widely employed from industrial to medical fields due to their small sizes and versatile characteristics. However, nanomaterials can also induce unexpected adverse effects on health. In particular, exposure of the nervous system to nanomaterials can cause serious neurological dysfunctions and neurodegenerative diseases. A number of studies have adopted various animal models to evaluate the neurotoxic effects of nanomaterials. Among them, zebrafish has become an attractive animal model for neurotoxicological studies due to several advantages, including the well-characterized nervous system, efficient genome editing, convenient generation of transgenic lines, high-resolution in vivo imaging, and an array of behavioral assays. In this review, we summarize recent studies on the neurotoxicological effects of nanomaterials, particularly engineered nanomaterials and nanoplastics, using zebrafish and discuss key findings with advantages and limitations of the zebrafish model in neurotoxicological studies.


Asunto(s)
Nanoestructuras , Síndromes de Neurotoxicidad , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Nanoestructuras/toxicidad , Síndromes de Neurotoxicidad/etiología , Pez Cebra/genética
20.
Viruses ; 14(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016404

RESUMEN

DNA damage response (DDR) is an evolutionarily conserved mechanism by which eukaryotic cells sense DNA lesions caused by intrinsic and extrinsic stimuli, including virus infection. Although interactions between DNA viruses and DDR have been extensively studied, how RNA viruses, especially coronaviruses, regulate DDR remains unknown. A previous study showed that the porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the Coronaviridae family, induces DDR in infected cells. However, the underlying mechanism was unclear. This study showed that PEDV activates the ATM-Chk2 signaling, while inhibition of ATM or Chk2 dampens the early stage of PEDV infection. Additionally, we found that PEDV-activated ATM signaling correlates with intracellular ROS production. Interestingly, we showed that, unlike the typical γH2AX foci, PEDV infection leads to a unique γH2AX staining pattern, including phase I (nuclear ring staining), II (pan-nuclear staining), and III (co-staining with apoptotic bodies), which highly resembles the apoptosis process. Furthermore, we demonstrated that PEDV-induced H2AX phosphorylation depends on the activation of caspase-7 and caspase-activated DNAse (CAD), but not ATM-Chk2. Finally, we showed that the knockdown of H2AX attenuates PEDV replication. Taken together, we conclude that PEDV induces DDR through the ROS-ATM and caspase7-CAD-γH2AX signaling pathways to foster its early replication.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Infecciones por Coronavirus/veterinaria , Desoxirribonucleasas , Fosforilación , Virus de la Diarrea Epidémica Porcina/genética , Especies Reactivas de Oxígeno , Transducción de Señal , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...