Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 8(3): e2300610, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009523

RESUMEN

High sulfur loading and long cycle life are the design targets of commercializable lithium-sulfur (Li-S) batteries. The sulfur electrochemical reactions from Li2 S4 to Li2 S, which account for 75% of the battery's theoretical capacity, involve liquid-to-solid and solid-to-solid phase changes in all Li-S battery electrolytes in use today. These are kinetically hindered processes that are exacerbated by a high sulfur loading. In this study, it is observed that an in situ grown bimetallic phosphide/black phosphorus (NiCoP/BP) heterostructure can effectively catalyze the Li2 S4 to Li2 S reactions to increase the sulfur utilization at high sulfur loadings. The NiCoP/BP heterostructure is a good polysulfide adsorber, and the electric field prevailing at the Mott-Schottky junction of the heterostructure can facilitate charge transfer in the Li2 S4 to Li2 S2 liquid-to-solid reaction and Li+ diffusion in the Li2 S2 to Li2 S solid-state reaction. Consequently, a sulfur cathode with the NiCoP/BP catalyst can deliver a specific capacity of 830 mAh g-1 at the sulfur loading of 6 mg cm-2 for 500 cycles at the 0.5 C rate. High sulfur utilization is also possible at a higher sulfur loading of 8 mg cm-2 for 440 cycles at the 1 C rate.

2.
ACS Nano ; 17(17): 17476-17488, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37606308

RESUMEN

Rechargeable zinc-air batteries (ZABs) have been considered promising as next-generation sustainable energy storage devices; however, their large-scale deployment is hampered by the unsatisfactory cyclic lifespan. Employing neutral and mild-acidic electrolytes is effective in extending the cyclability, but the rapid performance degradation of the bifunctional catalysts owing to different microenvironmental requirements of the alternative oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is still a serious limitation of their cyclic life. Herein, we propose a "self-decoupling" strategy to significantly improve the stability of the bifunctional catalysts by constructing a smart interface in the bifunctional air electrode. This smart interface, containing a resistance-switchable sulfonic acid doped polyaniline nanoarray interlayer, is nonconductive at high potential but conductive at low potential, which enables spontaneous electrochemical decoupling of the bifunctional catalyst for the ORR and OER, respectively, and thus protects it from degradation. The resulting self-decoupled mild-acidic ZAB delivers stable cyclic performances in terms of a negligible energy efficiency loss of 0.015% cycle-1 and 3 times longer cycle life (∼1400 h) compared with the conventional mild-acidic ZAB using a normal bifunctional air electrode and the same low-cost ZnCo phosphide/nitrogen-doped carbon bifunctional catalyst. This work provides an effective strategy for tolerating alternative oxidation-reduction reactions and emphasizes the importance of smart nanostructure design for more sustainable batteries.

3.
Mater Horiz ; 10(8): 2958-2967, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37166133

RESUMEN

Neutral/near-neutral electrolyte rechargeable zinc-air batteries (NN-ZABs) with long cycling lifetime are an evolutionary design of the conventional alkaline ZABs, but the extremely sluggish kinetics of oxygen electrocatalysis in mild pH solutions in the air-cathode has notably affected the energy efficiency of the NN-ZABs. Herein, we present a dynamic self-catalysis as the air-cathode chemistry to boost the energy efficiency of NN-ZABs, which is based on in situ reversible generation of highly active electrocatalysts from the electrolyte during the discharge and charge operations of ZABs, respectively. Two reversible redox reactions of Cu(I)/Cu(II) and Mn(II)/Mn(IV) in the NH4Cl-ZnCl2-based electrolyte are integrated with oxygen electrocatalysis in the air-cathode to in situ generate Cu(I)-O-Cl deposits during discharging and Cu-MnO2 deposits during charging, which directly catalyze the subsequent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. The in situ generated electrocatalysts deliver good oxygen electrocatalytic activities due to their distinctive surface structures and can be dissolved by potential reversal in a subsequent battery operation. The NN-ZAB designed as such delivers a record-high energy efficiency of 69.0% and a cycling life of 1800 h with an areal capacity of 10 mA h cm-2, surpassing the performances of NN-ZABs with preloaded electrocatalysts reported to date.

4.
Small Methods ; 6(11): e2200980, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209395

RESUMEN

Lithium metal battery is considered an emerging energy storage technology due to its high theoretical capacity and low electrochemical potential. However, the practical exploitations of lithium metal batteries are not realized because of uncontrollable lithium deposition and severe dendrite formation. Herein, a thermal percolation strategy is developed to fabricate a dual-conductive framework using electronically conductive Ti3 C2 Tx MXene aerogels (MXAs) and Li2 OHCl antiperovskite superionic conductor. By melting Li2 OHCl at a low temperature, the molten antiperovskite phase can penetrate the MXA scaffold, resulting in percolative electron/ion pathways. Through density functional theory calculations and electrochemical characterizations, the hybridized lithiophilic (MXA)-lithiophobic (antiperovskite) interfaces can spatially guide the deposition of lithium metals and suppress the growth of lithium dendrites. The symmetric cell with MXA-antiperovskite electrodes exhibits superior cycling stability at high areal capacities of 4 mAh cm-2 over 1000 h. Moreover, the full cell with MXA-antiperovskite anode and high-loading LiFePO4 cathode demonstrates high energy and power densities (415.7 Wh kgcell -1 and 231.0 W kgcell -1 ) with ultralong lifespans. The thermal percolation of lithium superionic conductor into electronically conductive scaffolds promises an efficient strategy to fabricate dual-conductive electrodes, which benefits the development of dendrite-free lithium metal anodes with high energy/power densities.

5.
Materials (Basel) ; 14(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810373

RESUMEN

This study proposes a hydrophobic and hydrophilic aliphatic diblock copolymer wherein the hydrophobic block contains glycidyl methacrylate (GMA) units that are distanced by poly(acrylonitrile) (PAN) segments to fabricate a proton exchange membrane (PEM). This diblock copolymer also known as ionomer due to the hydrophilic block comprising 3-sulfopropyl methacrylate potassium salt (SPM) block. The diblock copolymer was synthesized in the one-pot atom transfer radical polymerization (ATRP) synthesis. Subsequently, the membrane was fabricated by means of solution casting in which an organic diamine, e.g., ethylene diamine (EDA), was introduced to crosslink the diblock copolymer chains via the addition of amine to the epoxide group of GMA. As a result, the PEM attained possesses dual continuous phases, in which the hydrophobic domains are either agglomerated or bridged by the EDA-derived crosslinks, whereas the hydrophilic domains constitute the primary proton conducting channels. The in-situ crosslinking hydrophobic block by using a hydrophilic cross-linker represents the merit aspect since it leads to both improved proton conductivity and dimensional stability in alcohol fuel. To characterize the above properties, Nafion® 117 and random copolymer of P(AN-co-GMA-co-SPM) were used as control samples. The PEM with the optimized composition demonstrates slightly better fuel cell performance than Nafion 117. Lastly, this diblock ionomer is nonfluorinated and hence favors lowering down both material and environmental costs.

6.
Adv Mater ; 32(43): e2004686, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32954545

RESUMEN

Dual-band electrochromic smart windows capable of the spectrally selective modulation of visible (VIS) light and near-infrared (NIR) can regulate solar light and solar heat transmittance to reduce the building energy consumption. The development of these windows is however limited by the number of available dual-band electrochromic materials. Here, plasmonic oxygen-deficient TiO2-x nanocrystals (NCs) are discovered to be an effective single-component dual-band electrochromic material, and that oxygen-vacancy creation is more effective than aliovalent substitutional doping to introduce dual-band properties to TiO2 NCs. Oxygen vacancies not only confer good near-infrared (NIR)-selective modulation, but also improve the Li+ diffusion in the TiO2-x host, circumventing the disadvantage of aliovalent substitutional doping with ion diffusion. Consequently optimized TiO2-x NC films are able to modulate the NIR and visible light transmittance independently and effectively in three distinct modes with high optical modulation (95.5% at 633 nm and 90.5% at 1200 nm), fast switching speed, high bistability, and long cycle life. An impressive dual-band electrochromic performance is also demonstrated in prototype devices. The use of TiO2-x NCs enables the assembled windows to recycle a large fraction of energy consumed in the coloration process ("energy recycling") to reduce the energy consumption in a round-trip electrochromic operation.

7.
ACS Nano ; 13(12): 14208-14216, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31790591

RESUMEN

Most issues with Li-S batteries are caused by the slowness of the multielectron sulfur electrochemical reaction resulting in the loss of sulfur as soluble polysulfides to the electrolyte and the redox shuttling of polysulfides between the cathode and anode during battery charge and discharge. The acceleration of the polysulfide conversion reaction to their end products via electrocatalysis has the appeal of a root-cause solution. However, the polysulfide electrocatalysts developed to date have rarely considered polysulfide conversion as a multistep reaction and, as such, were not optimized to target specific steps in the overall S8 ↔ Li2Sn ↔ Li2S conversion. The targeting approach is however beneficial, as it can be used to design multicatalyst systems to reduce as many rate-limiting steps in the overall catalysis as effectively possible. This article demonstrates the concept and implementation of stepwise electrocatalysis in polysulfide conversion, using Fe-N and Co-N co-doped carbons to selectively catalyze the long-chain polysulfide conversion (S8 ↔ Li2S4) and the short-chain polysulfide conversion reactions (Li2S4 ↔ Li2S), respectively. The two electrocatalysts were deployed in the sulfur cathode as a dual layer, using an ordered spatial separation to synergize their catalytic effects. A sulfur electrode designed as such could utilize ∼90% of the sulfur theoretical specific capacity and support a high areal capacity of ∼8.3 mAh cm-2 and a low electrolyte/sulfur ratio of 5 µL mg-1.

8.
ACS Appl Mater Interfaces ; 11(51): 48062-48070, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31790202

RESUMEN

Dual-band electrochromic devices (DBEDs), which can selectively modulate near-infrared (NIR) and visible (VIS) light transmittance through electrochromism, have gained increasing interest as a building energy saving technology. The technology is strongly dependent on the progress in electrochromic materials. Most current research has focused on the dual-band properties of the cathode materials, leaving the charge-balancing anode materials under-explored by comparison. This is a report of our study on the suitability of tin-doped indium oxide (ITO) nanocrystals (NCs) as a capacitive anode material for DBEDs. The ITO NCs are electrically conductive and VIS light transparent throughout the device operating range. As a result, they would not affect the NIR-selective modulation of the electrochromic device like most other anode materials do. The high surface area and good conductivity of the ITO NCs facilitate the adsorption/desorption of anions; thereby increasing their effectiveness as an ion storage thin film on the anode to balance the cathode charge. The best DBED prototype assembled from an ITO NC anode and a WO3-x cathode showed effective and independent control of VIS light and NIR transmittance with high optical modulation (71.1% at 633 nm, 58.1% at 1200 nm), high coloration efficiency (95 cm2 C-1 at 633 nm, 220 cm2 C-1 at 1200 nm), fast switching speed, good bistability, and cycle stability.

9.
ACS Nano ; 13(6): 7073-7082, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31184138

RESUMEN

Lithium-sulfur batteries, with their high theoretical energy density and the low material cost of sulfur, are highly promising as a post-lithium ion battery contender. Their current performance is however compromised by sulfur loss and polysulfide shuttle to result in low energy efficiency and poor cycle stability. Herein, a catalytic material (Co9S8- x/CNT, nanoparticles with a metallic Co9S8 core and a sulfur-deficient shell on a CNT support) was applied as an interlayer on the sulfur cathode to retain migratory polysulfides and promote their reutilization. The Co9S8- x/CNT catalyst is highly effective for the conversion of polysulfides to insoluble end products (S or Li2S/Li2S2), and its deployment as a cathode-integrated interlayer was able to retain the polysulfides in the cathode for reuse. The accumulation of polysulfides in the electrolyte and the polysulfide shuttle were significantly reduced as a result. Consequently, a host-free sulfur cathode with the Co9S8- x/CNT interlayer had a low capacity fade rate of 0.049% per cycle for 1000 cycles at a 0.3C rate, a significant improvement of the capacity fade rate without it (0.28% per cycle for 200 cycles). The results here provide not only direct evidence for the contributions of sulfur deficiencies on the catalytic activity of Co9S8 in polysulfide conversion reactions but also the methodology on how the catalyst should be deployed in a Li-S battery for the best catalytic outcome.

10.
ACS Nano ; 12(8): 8048-8059, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30067908

RESUMEN

Two-dimensional MXene materials have demonstrated attractive electrical and electrochemical properties in energy storage applications. Adding stretchability to MXene remains challenging due to its high mechanical stiffness and weak intersheet interaction, so the assembling techniques for mechanically stable MXene architectures require further development. We report a simple fabrication by harnessing the interfacial instability to generate higher dimensional MXene nanocoatings capable of programmed crumpling/unfolding. A sequential patterning approach enabled the design of sequence-dependent MXene textures across multiple length scales, which were utilized for controllable wetting surfaces and high-areal-capacitance electrodes. We next transferred the crumpled MXene nanocoating onto an elastomer to fabricate an MXene/elastomer electrode with high stretchability. The accordion-like MXene can be reversibly folded/unfolded and still preserve efficient specific capacitances. We further fabricated asymmetric MXene supercapacitors, and the devices demonstrated efficient electrochemical performance and large deformability (180° bendability, 100% stretchability). Our texturing techniques can be applied to large MXene families for designing stretchable architectures in wearable electronics.

11.
Nat Commun ; 9(1): 1979, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773785

RESUMEN

Atom-by-atom engineering of nanomaterials requires atomic-level knowledge of the size evolution mechanism of nanoparticles, which remains one of the greatest mysteries in nanochemistry. Here we reveal atomic-level dynamics of size evolution reaction of molecular-like nanoparticles, i.e., nanoclusters (NCs) by delicate mass spectrometry (MS) analyses. The model size-conversion reaction is [Au23(SR)16]- → [Au25(SR)18]- (SR = thiolate ligand). We demonstrate that such isoelectronic (valence electron count is 8 in both NCs) size-conversion occurs by a surface-motif-exchange-induced symmetry-breaking core structure transformation mechanism, surfacing as a definitive reaction of [Au23(SR)16]- + 2 [Au2(SR)3]- → [Au25(SR)18]- + 2 [Au(SR)2]-. The detailed tandem MS analyses further suggest the bond susceptibility hierarchies in feed and final Au NCs, shedding mechanistic light on cluster reaction dynamics at atomic level. The MS-based mechanistic approach developed in this study also opens a complementary avenue to X-ray crystallography to reveal size evolution kinetics and dynamics.

12.
Sci Rep ; 8(1): 8284, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844398

RESUMEN

We report 3D coherent diffractive imaging (CDI) of Au/Pd core-shell nanoparticles with 6.1 nm spatial resolution with elemental specificity. We measured single-shot diffraction patterns of the nanoparticles using intense x-ray free electron laser pulses. By exploiting the curvature of the Ewald sphere and the symmetry of the nanoparticle, we reconstructed the 3D electron density of 34 core-shell structures from these diffraction patterns. To extract 3D structural information beyond the diffraction signal, we implemented a super-resolution technique by taking advantage of CDI's quantitative reconstruction capabilities. We used high-resolution model fitting to determine the Au core size and the Pd shell thickness to be 65.0 ± 1.0 nm and 4.0 ± 0.5 nm, respectively. We also identified the 3D elemental distribution inside the nanoparticles with an accuracy of 3%. To further examine the model fitting procedure, we simulated noisy diffraction patterns from a Au/Pd core-shell model and a solid Au model and confirmed the validity of the method. We anticipate this super-resolution CDI method can be generally used for quantitative 3D imaging of symmetrical nanostructures with elemental specificity.

13.
J Mater Chem B ; 6(19): 3156-3162, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32254350

RESUMEN

Herbal medicines with different Qi properties (the primary proxy of their therapeutic effects) are used in traditional Chinese medicine to maintain the harmony of vital forces in a human body. In the Western medicinal practice, the classification of Qi into four major families ("Si Qi" in Chinese Pinyin) is a challenging endeavor, especially by a simple non-reductionist approach. The method presented here is however able to distinguish the Qi of herbal medicines based on the measurements of several Qi-related features in a biological synthesis of nano-Au in herbal extracts: solution color, surface plasmon resonance properties, reaction time and nano-Au morphology. These Qi-related features on their own do not form sufficiently distinct clusters that are useful for the classification of the Qi-properties. The power of differentiation, however, is significantly improved when all the Qi-related features are considered together. The statistics of differentiation is encouraging, enabling us to develop a scheme which can classify all of the tested TCHMs into their respective Qi families. While this classification method was developed using a limited number of herbal medicines with known Qi properties, it has the potential to be applied as a scientific quick test to determine the Qi of new herbal medicines or herbal concoctions. It is our aspiration that this study can generate more interest in the development of non-reductionist approaches to modernize the understanding of TCHMs.

14.
ChemSusChem ; 9(21): 3067-3073, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27739654

RESUMEN

The rational design of nonprecious-metal electrocatalysts with activities comparable to or greater than that of platinum is extremely valuable to the development of high energy density metal-air batteries. Herein, the two-step preparation of a highly active oxygen electrocatalyst based on ultrasmall cobalt nanoparticles stabilized in a nitrogen-doped graphene matrix is reported. The catalyst performs as well as the commercial Pt/C catalyst in the oxygen reduction reaction, and better than the Pt/C catalyst in the oxygen evolution reaction. This particular electrocatalyst could significantly lower the overpotentials of oxygen electrochemical reactions in aqueous lithium-air batteries to attain a round-trip efficiency of about 79.0 % at a current density of 0.1 mA cm-2 , thereby surpassing the performance of the commercial Pt/C catalyst. The good performance may be attributed to strong metal-support interactions, maximized by a high dispersion of ultrasmall cobalt nanocrystals in a nitrogen-doped graphene matrix, which yields electrocatalytic properties greater than the sum of its parts.


Asunto(s)
Cobalto/química , Suministros de Energía Eléctrica , Técnicas Electroquímicas , Grafito/química , Nanopartículas del Metal/química , Oxígeno/química , Catálisis , Nitrógeno , Oxidación-Reducción
15.
Environ Sci Technol ; 50(19): 10596-10605, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27607546

RESUMEN

The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.


Asunto(s)
Membranas Artificiales , Nanotubos de Carbono , Ósmosis , Aguas Residuales/química , Purificación del Agua
16.
ACS Appl Mater Interfaces ; 8(5): 3535-42, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26795393

RESUMEN

In comparison with nonaqueous Li-air batteries, aqueous Li-air batteries are kinetically more facile and there is more variety of non-noble metal catalysts available for oxygen electrocatalysis, especially in alkaline solution. The alkaline battery environment is however vulnerable to electrolyte carbonation by atmospheric CO2 resulting in capacity loss over time. The acid aqueous solution is immune to carbonation but is limited by the lack of effective non-noble metal catalysts for the oxygen evolution reaction (OER). This is contrary to the oxygen reduction reaction (ORR) in acid solution where a few good candidates exist. We report here the development of a N-Co-O triply doped carbon catalyst with substantial OER activity in acid solution by the thermal codecomposition of polyaniline, cobalt salt and cyanamide in nitrogen. Cyanamide and the type of cobalt precursor salt were found to determine the structure, crystallinity, surface area, extent of Co doping and consequently the OER activity of the final carbon catalyst in acid solution. We have also put forward some hypotheses about the active sites that may be useful for guiding further work.

17.
Sci Rep ; 6: 19593, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26796675

RESUMEN

Internal concentration polarization (ICP) is a major issue in forward osmosis (FO) as it can significantly reduce the water flux in FO operations. It is known that a hydrophilic substrate and a smaller membrane structure parameter (S) are effective against ICP. This paper reports the development of a thin film composite (TFC) FO membrane with a hydrophilic mineral (CaCO3)-coated polyethersulfone (PES)-based substrate. The CaCO3 coating was applied continuously and uniformly on the membrane pore surfaces throughout the TFC substrate. Due to the intrinsic hydrophilicity of the CaCO3 coating, the substrate hydrophilicity was significantly increased and the membrane S parameter was reduced to as low as the current best of cellulose-based membranes but without the mechanical fragility of the latter. As a result, the ICP of the TFC-FO membrane could be significantly reduced to yield a remarkable increase in water flux without the loss of membrane selectivity.

18.
Chem Asian J ; 11(8): 1210-7, 2016 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-26663461

RESUMEN

Nanoparticle (NP) aggregates of lanthanum cobalt oxide perovskite (LCO) were compounded with reduced graphene oxide (rGO) nanosheets and used as the cathode catalyst for nonaqueous lithium-oxygen batteries (LOBs). The LCO NP aggregates were completely surrounded by rGO nanosheets in the composite with 10.5 wt % of rGO (LCO-rGO-10.5) but were partially exposed in the composite with 7.5 wt % of rGO (LCO-rGO-7.5). Both composites performed better than pristine LCO NPs and rGO nanosheets in nonaqueous oxygen electrocatalysis. The LCO-rGO-7.5 composite excelled at capacity and rate performance, while the LCO-rGO-10.5 composite was better at cycle stability. The good performance of the LCO-rGO composites was due to the synergy of functions of LCO and rGO.

19.
Nanoscale ; 7(30): 12906-12, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26165186

RESUMEN

The deposition of catalytic AuPt (1 : 1) nanoparticles (NPs) into hollow mesoporous nitrogen-doped carbon microspheres (HMCMS) was found to significantly improve the effectiveness of the catalysis of oxygen reactions in nonaqueous lithium-oxygen batteries (LOBs); surpassing the performance of unsupported AuPt NPs or HMCMS in discharge and charge overpotentials (lower), specific capacity and rate performance (higher), and cycle life (longer). Specifically at a typical current density of 100 mA g(-1), a LOB with the AuPt/HMCMS cathode catalyst could provide discharge and charge capacities of 6028 and 6000 mA h g(-1) respectively and a charge-discharge voltage gap of only 1.27 V. The discharge capacity decreased by 5% when the current density was doubled, and by 23% when the current density was quintupled. The AuPt/HMCMS LOB could be cycled 75 times for a depth of discharge (DOD) of 1000 mA h g(-1) without exceeding the charge cut-off voltage of 4.4 V. These measurements indicate that the HMCMS is an outstanding catalyst support to use for increasing the effectiveness of oxygen electrocatalysts in the LOBs.

20.
ACS Appl Mater Interfaces ; 7(23): 12930-6, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-25997179

RESUMEN

Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...