Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Neurology ; 102(10): e209429, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38710015

RESUMEN

BACKGROUND AND OBJECTIVES: People with sickle cell disease (SCD) are at risk of cognitive dysfunction independent of stroke. Diminished functional connectivity in select large-scale networks and white matter integrity reflect the neurologic consequences of SCD. Because chronic transfusion therapy is neuroprotective in preventing stroke and strengthening executive function abilities in people with SCD, we hypothesized that red blood cell (RBC) transfusion facilitates the acute reversal of disruptions in functional connectivity while white matter integrity remains unaffected. METHODS: Children with SCD receiving chronic transfusion therapy underwent a brain MRI measuring white matter integrity with diffusion tensor imaging and resting-state functional connectivity within 3 days before and after transfusion of RBCs. Cognitive assessments with the NIH Toolbox were acquired after transfusion and then immediately before the following transfusion cycle. RESULTS: Sixteen children with a median age of 12.5 years were included. Global assessments of functional connectivity using homotopy (p = 0.234) or modularity (p = 0.796) did not differ with transfusion. Functional connectivity within the frontoparietal network significantly strengthened after transfusion (median intranetwork Z-score 0.21 [0.17-0.30] before transfusion, 0.29 [0.20-0.36] after transfusion, p < 0.001), while there was not a significant change seen within the sensory motor, visual, auditory, default mode, dorsal attention, or cingulo-opercular networks. Corresponding to the change within the frontoparietal network, there was a significant improvement in executive function abilities after transfusion (median executive function composite score 87.7 [81.3-90.7] before transfusion, 90.3 [84.3-93.7] after transfusion, p = 0.021). Participants with stronger connectivity in the frontoparietal network before transfusion had a significantly greater improvement in the executive function composite score with transfusion (r = 0.565, 95% CI 0.020-0.851, p = 0.044). While functional connectivity and executive abilities strengthened with transfusion, there was not a significant change in white matter integrity as assessed by fractional anisotropy and mean diffusivity within 16 white matter tracts or globally with tract-based spatial statistics. DISCUSSION: Strengthening of functional connectivity with concomitant improvement in executive function abilities with transfusion suggests that functional connectivity MRI could be used as a biomarker for acutely reversible neurocognitive injury as novel therapeutics are developed for people with SCD.


Asunto(s)
Anemia de Células Falciformes , Disfunción Cognitiva , Imagen de Difusión Tensora , Humanos , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/fisiopatología , Masculino , Niño , Femenino , Adolescente , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Transfusión de Eritrocitos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Función Ejecutiva/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen
2.
JCI Insight ; 9(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38516884

RESUMEN

Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). While the precise pathophysiology of AD is incompletely understood, clinical trials of antibodies targeting aggregated forms of ß amyloid (Aß) have shown that reducing amyloid plaques can mitigate cognitive decline in patients with early-stage AD. Here, we describe what we believe to be a novel approach to target and degrade amyloid plaques by genetically engineering macrophages to express an Aß-targeting chimeric antigen receptor (CAR-Ms). When injected intrahippocampally, first-generation CAR-Ms have limited persistence and fail to significantly reduce plaque load, which led us to engineer next-generation CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. Cytokine secreting "reinforced CAR-Ms" have greater survival in the brain niche and significantly reduce plaque load locally in vivo. These findings support CAR-Ms as a platform to rationally target, resorb, and degrade pathogenic material that accumulates with age, as exemplified by targeting Aß in AD.


Asunto(s)
Enfermedad de Alzheimer , Receptores Quiméricos de Antígenos , Ratones , Animales , Humanos , Ratones Transgénicos , Placa Amiloide/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/patología , Citocinas/metabolismo , Macrófagos/metabolismo
3.
J Cereb Blood Flow Metab ; : 271678X241237072, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436254

RESUMEN

Abnormal oxygen extraction fraction (OEF), a putative biomarker of cerebral metabolic stress, may indicate compromised oxygen delivery and ischemic vulnerability in patients with sickle cell disease (SCD). Elevated OEF was observed at the tissue level across the brain using an asymmetric spin echo (ASE) MR method, while variable global OEFs were found from the superior sagittal sinus (SSS) using a T2-relaxation-under-spin-tagging (TRUST) MRI method with different calibration models. In this study, we aimed to compare the average ASE-OEF in the SSS drainage territory and TRUST-OEF in the SSS from the same SCD patients and healthy controls. 74 participants (SCD: N = 49; controls: N = 25) underwent brain MRI. TRUST-OEF was quantified using the Lu-bovine, Bush-HbA and Li-Bush-HbS models. ASE-OEF and TRUST-OEF were significantly associated in healthy controls after controlling for hematocrit using the Lu-bovine or the Bush-HbA model. However, no association was found between ASE-OEF and TRUST-OEF in patients with SCD using either the Bush-HbA or the Li-Bush-HbS model. Plausible explanations include a discordance between spatially volume-averaged oxygenation brain tissue and flow-weighted volume-averaged oxygenation in SSS or sub-optimal calibration in SCD. Further work is needed to refine and validate non-invasive MR OEF measurements in SCD.

4.
ArXiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313204

RESUMEN

BACKGROUND: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired. NEW METHOD: A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep. RESULTS: Sleep states were classified with an accuracy of 84% and Cohen's kappa of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner. COMPARISON WITH EXISTING METHOD: On a 3-hour WFCI recording, the CNN-BiLSTM achieved a kappa of 0.67, comparable to a kappa of 0.65 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS: The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep.

5.
Stroke ; 55(3): e61-e76, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38235581

RESUMEN

Accumulating evidence supports a link between sleep disorders, disturbed sleep, and adverse brain health, ranging from stroke to subclinical cerebrovascular disease to cognitive outcomes, including the development of Alzheimer disease and Alzheimer disease-related dementias. Sleep disorders such as sleep-disordered breathing (eg, obstructive sleep apnea), and other sleep disturbances, as well, some of which are also considered sleep disorders (eg, insomnia, sleep fragmentation, circadian rhythm disorders, and extreme sleep duration), have been associated with adverse brain health. Understanding the causal role of sleep disorders and disturbances in the development of adverse brain health is complicated by the common development of sleep disorders among individuals with neurodegenerative disease. In addition to the role of sleep disorders in stroke and cerebrovascular injury, mechanistic hypotheses linking sleep with brain health and biomarker data (blood-based, cerebrospinal fluid-based, and imaging) suggest direct links to Alzheimer disease-specific pathology. These potential mechanisms and the increasing understanding of the "glymphatic system," and the recognition of the importance of sleep in poststroke recovery, as well, support a biological basis for the indirect (through the worsening of vascular disease) and direct (through specific effects on neuropathology) connections between sleep disorders and brain health. Given promising evidence for the benefits of treatment and prevention, sleep disorders and disturbances represent potential targets for early treatment that may improve brain health more broadly. In this scientific statement, we discuss the evidence supporting an association between sleep disorders and disturbances and poor brain health ranging from stroke to dementia and opportunities for prevention and early treatment.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Trastornos del Sueño-Vigilia , Accidente Cerebrovascular , Humanos , Enfermedad de Alzheimer/complicaciones , American Heart Association , Sueño , Encéfalo/patología , Accidente Cerebrovascular/complicaciones , Trastornos del Sueño-Vigilia/complicaciones
6.
Top Stroke Rehabil ; : 1-12, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278142

RESUMEN

INTRODUCTION: Ecological momentary assessment (EMA) is a methodological approach to studying intraindividual variation over time. This study aimed to use EMA to determine the variability of cognition in individuals with chronic stroke, identify the latent classes of cognitive variability, and examine any differences in daily activities, social functioning, and neuropsychological performance between these latent classes. METHODS: Participants (N = 202) with mild-to-moderate stroke and over 3-month post-stroke completed a study protocol, including smartphone-based EMA and two lab visits. Participants responded to five EMA surveys daily for 14 days to assess cognition. They completed patient-reported measures and neuropsychological assessments during lab visits. Using latent class analysis, we derived four indicators to quantify cognitive variability and identified latent classes among participants. We used ANOVA and Chi-square to test differences between these latent classes in daily activities, social functioning, and neuropsychological performance. RESULTS: The latent class analysis converged on a three-class model. The moderate and high variability classes demonstrated significantly greater problems in daily activities and social functioning than the low class. They had significantly higher proportions of participants with problems in daily activities and social functioning than the low class. Neuropsychological performance was not statistically different between the three classes, although a trend approaching statistically significant difference was observed in working memory and executive function domains. DISCUSSION: EMA could capture intraindividual cognitive variability in stroke survivors. It offers a new approach to understanding the impact and mechanism of post-stroke cognitive problems in daily life and identifying individuals benefiting from self-regulation interventions.

7.
Neuroimage ; 285: 120494, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086495

RESUMEN

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques at both global and regional level to compare their ability to detect the established relationship between WMH burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relationships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional level, including in large, combined datasets.


Asunto(s)
Leucoaraiosis , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Algoritmos , Envejecimiento
8.
Neurocrit Care ; 40(1): 303-313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37188885

RESUMEN

BACKGROUND: Cerebral edema has primarily been studied using midline shift or clinical deterioration as end points, which only captures the severe and delayed manifestations of a process affecting many patients with stroke. Quantitative imaging biomarkers that measure edema severity across the entire spectrum could improve its early detection, as well as identify relevant mediators of this important stroke complication. METHODS: We applied an automated image analysis pipeline to measure the displacement of cerebrospinal fluid (ΔCSF) and the ratio of lesional versus contralateral hemispheric cerebrospinal fluid (CSF) volume (CSF ratio) in a cohort of 935 patients with hemispheric stroke with follow-up computed tomography scans taken a median of 26 h (interquartile range 24-31) after stroke onset. We determined diagnostic thresholds based on comparison to those without any visible edema. We modeled baseline clinical and radiographic variables against each edema biomarker and assessed how each biomarker was associated with stroke outcome (modified Rankin Scale at 90 days). RESULTS: The displacement of CSF and CSF ratio were correlated with midline shift (r = 0.52 and - 0.74, p < 0.0001) but exhibited broader ranges. A ΔCSF of greater than 14% or a CSF ratio below 0.90 identified those with visible edema: more than half of the patients with stroke met these criteria, compared with only 14% who had midline shift at 24 h. Predictors of edema across all biomarkers included a higher National Institutes of Health Stroke Scale score, a lower Alberta Stroke Program Early CT score, and lower baseline CSF volume. A history of hypertension and diabetes (but not acute hyperglycemia) predicted greater ΔCSF but not midline shift. Both ΔCSF and a lower CSF ratio were associated with worse outcome, adjusting for age, National Institutes of Health Stroke Scale score, and Alberta Stroke Program Early CT score (odds ratio 1.7, 95% confidence interval 1.3-2.2 per 21% ΔCSF). CONCLUSIONS: Cerebral edema can be measured in a majority of patients with stroke on follow-up computed tomography using volumetric biomarkers evaluating CSF shifts, including in many without visible midline shift. Edema formation is influenced by clinical and radiographic stroke severity but also by chronic vascular risk factors and contributes to worse stroke outcomes.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/epidemiología , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/epidemiología , Edema Encefálico/etiología , Incidencia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Biomarcadores , Edema/complicaciones , Factores de Riesgo , Resultado del Tratamiento
9.
Int J Stroke ; 19(1): 68-75, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37382409

RESUMEN

BACKGROUND: Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema. AIMS: Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers. METHODS: A total of 65 patients had measurable supratentorial ischemic lesions. Patients underwent head computed tomography (CT), brain magnetic resonance imaging (MRI) scans, or both at the baseline visit and after 2, 7, 30, and 90 days following enrollment. CT and MRI scans were used to measure four imaging markers of edema: midline shift (MLS), hemisphere volume ratio (HVR), cerebrospinal fluid (CSF) volume, and NWU using semi-quantitative threshold analysis. Trajectories of the markers were summarized, as available. Correlations of the markers of edema were computed and the markers compared by clinical outcome. Regression models were used to examine the effect of 3K3A-activated protein C (APC) treatment. RESULTS: Two measures of mass effect, MLS and HVR, could be measured on all imaging modalities, and had values available across all time points. Accordingly, mass effect reached a maximum level by day 7, normalized by day 30, and then reversed by day 90 for both measures. In the first 2 days after stroke, the change in CSF volume was associated with MLS (ρ = -0.57, p = 0.0001) and HVR (ρ = -0.66, p < 0.0001). In contrast, the change in NWU was not associated with the other imaging markers (all p ⩾ 0.49). While being directionally consistent, we did not observe a difference in the edema markers by clinical outcome. In addition, baseline stroke volume was associated with all markers (MLS (p < 0.001), HVR (p < 0.001), change in CSF volume (p = 0.003)) with the exception of NWU (p = 0.5). Exploratory analysis did not reveal a difference in cerebral edema markers by treatment arm. CONCLUSIONS: Existing cerebral edema imaging markers potentially describe two distinct processes, including lesional water concentration (i.e. NWU) and mass effect (MLS, HVR, and CSF volume). These two types of imaging markers may represent distinct aspects of cerebral edema, which could be useful for future trials targeting this process.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Accidente Cerebrovascular Isquémico/complicaciones , Agua/metabolismo , Edema/complicaciones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología
10.
Artículo en Inglés | MEDLINE | ID: mdl-37884084

RESUMEN

OBJECTIVE: To examine the relationships between post-stroke depression and cognition using network analysis. In particular, we identified central depressive symptoms, central cognitive performances, and bridge components that connect these 2 constructs. DESIGN: An observational study. We applied network analysis to analyze baseline data to visualize and quantify the relationships between depression and cognition. SETTING: Home and Community. PARTICIPANTS: 202 participants with mild-to-moderate stroke (N=202; mean age: 59.7 years; 55% men; 55% Whites; 90% ischemic stroke). INTERVENTION: Not applicable. MAIN OUTCOME MEASURES: Patient Health Questionnaire (PHQ-8) for depressive symptoms and the NIH Toolbox Cognitive Battery for cognitive performances. RESULTS: Depressive symptoms were positively intercorrelated with the network, with symptoms from similar domains clustered together. Mood (expected influence=1.58), concentration (expected influence=0.67), and guilt (expected influence=0.63) were the top 3 central depressive symptoms. Cognitive performances also showed similar network patterns, with executive function (expected influence=0.89), expressive language (expected influence=0.68), and processing speed (expected influence=0.48) identified as the top 3 central cognitive performances. Psychomotor functioning (bridge expected influence=2.49) and attention (bridge expected influence=1.10) were the components connecting depression and cognition. CONCLUSIONS: The central and bridge components identified in this study might serve as targets for interventions against these deficits. Future trials are needed to compare the effectiveness of interventions targeting the central and bridge components vs general interventions treating depression and cognitive impairment as a homogenous clinical syndrome.

11.
Medicine (Baltimore) ; 102(35): e34200, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657055

RESUMEN

This study aimed to examine whether the 3 harmonic components (HCs) of photoplethysmography (PTG) - total harmonic distortion (THD), harmonic power (HP), and normalized harmonic amplitude (HA) - have aging effects and may serve as an arterial stiffness marker and examine the relationship between HCs and clinical severity of pathological patterns. This study had a retrospective chart review design, and electronic medical records of 173 female patients (age: 38.57 ± 11.64 years) were reviewed. Patients were asked to complete the phlegm, blood stasis (BS), and food retention (FR) pattern questionnaires and underwent PTG and the second derivative of PTG measurements. THD, HP, and HA data were extracted till the 12th HCs from the raw PTG data. THD and HA had an aging effect (ß: -0.179 to -0.278) and were related to b/a (r: -02.76 to -0.455) and d/a (r: 0.265-0.360) of the second derivative of PTG. In the younger group (≤33 years), HP and HA were positively correlated with phlegm, BS, and FR patterns (r: 0.257-0.370), while HP was positively correlated with the FR pattern (r: 0.278-0.315) in the middle age group (34-45 years). In the older group (≥46 years), HP and HA were positively or negatively correlated with the phlegm pattern (r: ±0.263 to ±0.440). HCs may serve as an arterial stiffness marker, and may be partially related to phlegm, BS, and FR patterns. Aging effect needs to be considered when utilizing HCs as an indicator of phlegm, BS, and FR patterns.


Asunto(s)
Moco , Fotopletismografía , Persona de Mediana Edad , Humanos , Femenino , Adulto , Estudios Transversales , Estudios Retrospectivos , Envejecimiento
12.
Alzheimers Dement ; 19(10): 4488-4497, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563879

RESUMEN

INTRODUCTION: Vascular damage in Alzheimer's disease (AD) has shown conflicting findings particularly when analyzing longitudinal data. We introduce white matter hyperintensity (WMH) longitudinal morphometric analysis (WLMA) that quantifies WMH expansion as the distance from lesion voxels to a region of interest boundary. METHODS: WMH segmentation maps were derived from 270 longitudinal fluid-attenuated inversion recovery (FLAIR) ADNI images. WLMA was performed on five data-driven WMH patterns with distinct spatial distributions. Amyloid accumulation was evaluated with WMH expansion across the five WMH patterns. RESULTS: The preclinical group had significantly greater expansion in the posterior ventricular WM compared to controls. Amyloid significantly associated with frontal WMH expansion primarily within AD individuals. WLMA outperformed WMH volume changes for classifying AD from controls primarily in periventricular and posterior WMH. DISCUSSION: These data support the concept that localized WMH expansion continues to proliferate with amyloid accumulation throughout the entirety of the disease in distinct spatial locations.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética
13.
Stroke ; 54(8): 2096-2104, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37387218

RESUMEN

BACKGROUND: Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings. METHODS: We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation. RESULTS: The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations. CONCLUSIONS: UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.


Asunto(s)
Anemia de Células Falciformes , Niño , Humanos , Adulto Joven , Estudios Prospectivos , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/terapia , Infarto Cerebral/complicaciones , Encéfalo , Imagen por Resonancia Magnética
14.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37162824

RESUMEN

Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). Several monoclonal antibodies targeting aggregated forms of beta amyloid (Aß), have been shown to reduce amyloid plaques and in some cases, mitigate cognitive decline in early-stage AD patients. We sought to determine if genetically engineered macrophages could improve the targeting and degradation of amyloid plaques. Chimeric antigen receptor macrophages (CAR-Ms), which show promise as a cancer treatment, are an appealing strategy to enhance target recognition and phagocytosis of amyloid plaques in AD. We genetically engineered macrophages to express a CAR containing the anti-amyloid antibody aducanumab as the external domain and the Fc receptor signaling domain internally. CAR-Ms recognize and degrade Aß in vitro and on APP/PS1 brain slices ex vivo; however, when injected intrahippocampally, these first-generation CAR-Ms have limited persistence and fail to reduce plaque load. We overcame this limitation by creating CAR-Ms that secrete M-CSF and self-maintain without exogenous cytokines. These CAR-Ms have greater survival in the brain niche, and significantly reduce plaque load locally in vivo. These proof-of-principle studies demonstrate that CAR-Ms, previously only applied to cancer, may be utilized to target and degrade unwanted materials, such as amyloid plaques in the brains of AD mice.

15.
Circ Res ; 132(11): e206-e222, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37132383

RESUMEN

BACKGROUND: Platelet adhesion and aggregation play a crucial role in arterial thrombosis and ischemic stroke. Here, we identify platelet ERO1α (endoplasmic reticulum oxidoreductase 1α) as a novel regulator of Ca2+ signaling and a potential pharmacological target for treating thrombotic diseases. METHODS: Intravital microscopy, animal disease models, and a wide range of cell biological studies were utilized to demonstrate the pathophysiological role of ERO1α in arteriolar and arterial thrombosis and to prove the importance of platelet ERO1α in platelet activation and aggregation. Mass spectrometry, electron microscopy, and biochemical studies were used to investigate the molecular mechanism. We used novel blocking antibodies and small-molecule inhibitors to study whether ERO1α can be targeted to attenuate thrombotic conditions. RESULTS: Megakaryocyte-specific or global deletion of Ero1α in mice similarly reduced platelet thrombus formation in arteriolar and arterial thrombosis without affecting tail bleeding times and blood loss following vascular injury. We observed that platelet ERO1α localized exclusively in the dense tubular system and promoted Ca2+ mobilization, platelet activation, and aggregation. Platelet ERO1α directly interacted with STIM1 (stromal interaction molecule 1) and SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase 2) and regulated their functions. Such interactions were impaired in mutant STIM1-Cys49/56Ser and mutant SERCA2-Cys875/887Ser. We found that ERO1α modified an allosteric Cys49-Cys56 disulfide bond in STIM1 and a Cys875-Cys887 disulfide bond in SERCA2, contributing to Ca2+ store content and increasing cytosolic Ca2+ levels during platelet activation. Inhibition of Ero1α with small-molecule inhibitors but not blocking antibodies attenuated arteriolar and arterial thrombosis and reduced infarct volume following focal brain ischemia in mice. CONCLUSIONS: Our results suggest that ERO1α acts as a thiol oxidase for Ca2+ signaling molecules, STIM1 and SERCA2, and enhances cytosolic Ca2+ levels, promoting platelet activation and aggregation. Our study provides evidence that ERO1α may be a potential target to reduce thrombotic events.


Asunto(s)
Accidente Cerebrovascular Isquémico , Trombosis , Animales , Ratones , Plaquetas/metabolismo , Señalización del Calcio , Disulfuros , Accidente Cerebrovascular Isquémico/metabolismo , Activación Plaquetaria
16.
J Neuroimaging ; 33(4): 606-616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37095592

RESUMEN

BACKGROUND AND PURPOSE: Volumetric and densitometric biomarkers have been proposed to better quantify cerebral edema after stroke, but their relative performance has not been rigorously evaluated. METHODS: Patients with large vessel occlusion stroke from three institutions were analyzed. An automated pipeline extracted brain, cerebrospinal fluid (CSF), and infarct volumes from serial CTs. Several biomarkers were measured: change in global CSF volume from baseline (ΔCSF); ratio of CSF volumes between hemispheres (CSF ratio); and relative density of infarct region compared with mirrored contralateral region (net water uptake [NWU]). These were compared to radiographic standards, midline shift and relative hemispheric volume (RHV) and malignant edema, defined as deterioration resulting in need for osmotic therapy, decompressive surgery, or death. RESULTS: We analyzed 255 patients with 210 baseline CTs, 255 24-hour CTs, and 81 72-hour CTs. Of these, 35 (14%) developed malignant edema and 63 (27%) midline shift. CSF metrics could be calculated for 310 (92%), while NWU could only be obtained from 193 (57%). Peak midline shift was correlated with baseline CSF ratio (ρ = -.22) and with CSF ratio and ΔCSF at 24 hours (ρ = -.55/.63) and 72 hours (ρ = -.66/.69), but not with NWU (ρ = .15/.25). Similarly, CSF ratio was correlated with RHV (ρ = -.69/-.78), while NWU was not. Adjusting for age, National Institutes of Health Stroke Scale, tissue plasminogen activator treatment, and Alberta Stroke Program Early CT Score, CSF ratio (odds ratio [OR]: 1.95 per 0.1, 95% confidence interval [CI]: 1.52-2.59) and ΔCSF at 24 hours (OR: 1.87 per 10%, 95% CI: 1.47-2.49) were associated with malignant edema. CONCLUSION: CSF volumetric biomarkers can be automatically measured from almost all routine CTs and correlate better with standard edema endpoints than net water uptake.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Edema Encefálico/diagnóstico por imagen , Activador de Tejido Plasminógeno , Accidente Cerebrovascular/patología , Isquemia Encefálica/patología , Tomografía Computarizada por Rayos X/métodos , Accidente Cerebrovascular Isquémico/complicaciones , Edema/complicaciones , Biomarcadores , Infarto/complicaciones , Agua , Estudios Retrospectivos
17.
Neuroimage Clin ; 38: 103373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36933348

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and vascular contributions to cognitive impairment and dementia (VCID) pathologies coexist in patients with cognitive impairment. Abnormal amyloid beta (Aß) deposition is the hallmark pathologic biomarker for AD. Neuroinflammation may be a pathophysiological mechanism in both AD and VCID. In this study, we aimed to understand the role of neuroinflammation and Aß deposition in white matter hyperintensities (WMH) progression and cognitive decline over a decade in patients with mixed AD and VCID pathologies. METHODS: Twenty-four elderly participants (median [interquartile range] age 78 [64.8, 83] years old, 14 female) were recruited from the Knight Alzheimer Disease Research Center. 11C-PK11195 standard uptake value ratio (SUVR) and 11C-PiB mean cortical binding potential (MCBP) were used to evaluate neuroinflammation and Aß deposition in-vivo, respectively. Fluid-attenuated inversion recovery MR images were acquired to obtain baseline WMH volume and its progression over 11.5 years. Composite cognitive scores (global, processing speed and memory) were computed at baseline and follow-up over 7.5 years. Multiple linear regression models evaluated the association between PET biomarkers (11C-PK11195 SUVR and 11C-PiB MCBP) and baseline WMH volume and cognitive function. Moreover, linear mixed-effects models evaluated whether PET biomarkers predicted greater WMH progression or cognitive decline over a decade. RESULTS: Fifteen participants (62.5%) had mixed AD (positive PiB) and VCID (at least one vascular risk factor) pathologies. Elevated 11C-PK11195 SUVR, but not 11C-PiB MCBP, was associated with greater baseline WMH volume and predicted greater WMH progression. Elevated 11C-PiB MCBP was associated with baseline memory and global cognition. Elevated 11C-PK11195 SUVR and elevated 11C-PiB MCBP independently predicted greater global cognition and processing speed declines. No association was found between 11C-PK11195 SUVR and 11C-PiB MCBP. CONCLUSIONS: Neuroinflammation and Aß deposition may represent two distinct pathophysiological pathways, and both independently contributed to the progression of cognitive impairment in mixed AD and VCID pathologies. Neuroinflammation, but not Aß deposition, contributed to WMH volume and progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Demencia Vascular , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Demencia Vascular/diagnóstico por imagen , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Biomarcadores , Tomografía de Emisión de Positrones
19.
Methods Mol Biol ; 2616: 113-151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715932

RESUMEN

Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.


Asunto(s)
Accidente Cerebrovascular Isquémico , Acoplamiento Neurovascular , Accidente Cerebrovascular , Animales , Ratones , Encéfalo , Imagen por Resonancia Magnética , Imagen Óptica/métodos , Accidente Cerebrovascular/diagnóstico por imagen
20.
Arch Phys Med Rehabil ; 104(5): 761-768, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36535421

RESUMEN

OBJECTIVE: Stroke symptoms fluctuate during the day as stroke survivors participate in daily activities. Understanding the real-time associations among stroke symptoms and depressed mood, as well as the role of motivation for daily activities, informs, and post-stroke symptom management in the context of everyday living. This study aimed to (1) investigate the real-time associations of fatigue, cognitive complaints, and pain with depressed mood and (2) examine the role of motivation for daily activity participation as a potential moderator of these associations in stroke survivors. DESIGN: A prospective cohort study involving 7 days of ecological momentary assessment (EMA), during which participants completed 8 EMA surveys per day. Multilevel modeling was used to analyze data. SETTING: Community. PARTICIPANTS: Forty community-dwelling stroke survivors (N=40). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: EMA measures of depressed mood, stroke symptoms (physical and mental fatigue, cognitive complaints, and pain), and motivation (autonomous motivation, controlled motivation). RESULTS: Higher levels of within- and between-person physical fatigue, mental fatigue, cognitive complaints, and pain were momentarily associated with greater depressed mood (Ps<.001). Within-person autonomous motivation significantly buffered the momentary associations of physical fatigue (B=-0.06, P<.001), mental fatigue (B=-0.04, P=.032), and pain (B=-0.21, P<.001) with depressed mood. CONCLUSIONS: Findings indicate the momentary associations of fatigue, cognitive complaints, and pain with depressed mood in stroke survivors. Autonomous motivation underpinning daily activity participation was found to buffer the associations of fatigue and pain with depressed mood. Promoting autonomous motivation for daily activity participation may be viable for preventing and mitigating poststroke depression.


Asunto(s)
Evaluación Ecológica Momentánea , Accidente Cerebrovascular , Humanos , Motivación , Estudios Prospectivos , Accidente Cerebrovascular/complicaciones , Sobrevivientes , Dolor/etiología , Fatiga Mental , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...