Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606698

RESUMEN

Water deficit stress limits net photosynthetic rate (AN), but the relative sensitivities of underlying processes such as thylakoid reactions, ATP production, carbon fixation reactions, and carbon loss processes to water deficit stress in field-grown upland cotton require further exploration. Therefore, the objective of the present study was to assess (1) the diffusional and biochemical mechanisms associated with water deficit-induced declines in AN and (2) associations between water deficit-induced variation in oxidative stress and energy dissipation for field-grown cotton. Water deficit stress was imposed for three weeks during the peak bloom stage of cotton development, causing significant reductions in leaf water potential and AN. Among diffusional limitations, mesophyll conductance was the major contributor to the AN decline. Several biochemical processes were adversely impacted by water deficit. Among these, electron transport rate and RuBP regeneration were most sensitive to AN-limiting water deficit. Carbon loss processes (photorespiration and dark respiration) were less sensitive than carbon assimilation, contributing to the water deficit-induced declines in AN. Increased energy dissipation via non-photochemical quenching or maintenance of electron flux to photorespiration prevented oxidative stress. Declines in AN were not associated with water deficit-induced variation in ATP production. It was concluded that diffusional limitations followed by biochemical limitations (ETR and RuBP regeneration) contributed to declines in AN, carbon loss processes partially contributed to the decline in AN, and increased energy dissipation prevented oxidative stress under water deficit in field-grown cotton.


Asunto(s)
Fotosíntesis , Agua , Transporte de Electrón , Hojas de la Planta , Deshidratación , Carbono , Adenosina Trifosfato
2.
Front Plant Sci ; 14: 1248152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794937

RESUMEN

Lint yield in cotton is governed by light intercepted by the canopy (IPAR), radiation use efficiency (RUE), and harvest index (HI). However, the conventional methods of measuring these yield-governing physiological parameters are labor-intensive, time-consuming and requires destructive sampling. This study aimed to explore the use of low-cost and high-resolution UAV-based RGB and multispectral imagery 1) to estimate fraction of IPAR (IPARf), RUE, and biomass throughout the season, 2) to estimate lint yield using the cotton fiber index (CFI), and 3) to determine the potential use of biomass and lint yield models for estimating cotton HI. An experiment was conducted during the 2021 and 2022 growing seasons in Tifton, Georgia, USA in randomized complete block design with five different nitrogen treatments. Different nitrogen treatments were applied to generate substantial variability in canopy development and yield. UAV imagery was collected bi-weekly along with light interception and biomass measurements throughout the season, and 20 different vegetation indices (VIs) were computed from the imagery. Generalized linear regression was performed to develop models using VIs and growing degree days (GDDs). The IPARf models had R2 values ranging from 0.66 to 0.90, and models based on RVI and RECI explained the highest variation (93%) in IPARf during cross-validation. Similarly, cotton above-ground biomass was best estimated by models from MSAVI and OSAVI. Estimation of RUE using actual biomass measurement and RVI-based IPARf model was able to explain 84% of variation in RUE. CFI from UAV-based RGB imagery had strong relationship (R2 = 0.69) with machine harvested lint yield. The estimated HI from CFI-based lint yield and MSAVI-based biomass models was able to explain 40 to 49% of variation in measured HI for the 2022 growing season. The models developed to estimate the yield-contributing physiological parameters in cotton showed low to strong performance, with IPARf and above-ground biomass having greater prediction accuracy. Future studies on accurate estimation of lint yield is suggested for precise cotton HI prediction. This study is the first attempt of its kind and the results can be used to expand and improve research on predicting functional yield drivers of cotton.

3.
J Org Chem ; 81(13): 5314-21, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27247023

RESUMEN

The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed.


Asunto(s)
Aldehídos/química , Boranos/química , Boranos/aislamiento & purificación , Catálisis , Enlace de Hidrógeno , Ácidos de Lewis , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
4.
J Org Chem ; 79(3): 1120-30, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24428682

RESUMEN

Photooxygenation of permanently interlocked squaraine rotaxanes with anthracene-containing macrocycles produces the corresponding squaraine rotaxane endoperoxides (SREPs) quantitatively. SREPs are stored at low temperature, and upon warming, they undergo clean cycloreversion, releasing singlet oxygen and emitting light. The structural elucidation in 2010 assigned the structure as the SREP-int stereoisomer, with the endoperoxide unit directed inside the macrocycle cavity. New experimental and computational evidence reported here proves that the initial, kinetic photooxygenation product is the less stable SREP-ext stereoisomer with the endoperoxide unit directed outside the macrocycle. The photophysical properties and subsequent reactivity of mechanically strained SREP-ext depend on the size of the end groups of the encapsulated squaraine dye. If the end groups are sufficiently large to prevent dissociation of the interlocked components, the strained SREP-ext stereoisomer undergoes clean thermal cycloreversion. However, smaller squaraine end groups allow transient dissociation, resulting in a pseudorotaxane dissociation/association process that produces SREP-int as the thermodynamic stereoisomer that does not cyclorevert. The large difference in endoperoxide reactivity for the two SREP stereoisomers illustrates the power of the mechanical bond to induce cross-component steric strain and selective enhancement of a specific reaction pathway. The new insight enabled synthetic development of triptycene-containing squaraine rotaxanes with high fluorescence quantum yields and large Stokes shifts.


Asunto(s)
Antracenos/química , Ciclobutanos/química , Ciclobutanos/síntesis química , Compuestos Macrocíclicos/química , Peróxidos/química , Fenoles/química , Fenoles/síntesis química , Rotaxanos/química , Rotaxanos/síntesis química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fotoquímica , Estereoisomerismo
5.
J Am Chem Soc ; 134(36): 14973-81, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22891640

RESUMEN

The basis for diastereoselectivity in Lewis-acid-catalyzed Mukaiyama aldol reactions was studied using density functional theory. By exploring the conformations of the transition structures for the diastereodifferentiating step of seven different reactions, simple models were generated. The effects of varying the substituents on the enol carbon and the α-carbon of the silyl enol ether from methyl to tert-butyl groups and the substituent on the aldehyde from methyl to phenyl groups were investigated by comparison of the transition structures for different reactions. Expanding on the previous qualitative models by Heathcock and Denmark, we found that while the pro-anti pathways take place via antiperiplanar transition structures, the pro-syn pathways prefer synclinal transition structures. The relative steric effects of the Lewis acid and trimethyl silyl groups and the influence of E/Z isomerism on the aldol transition state were investigated. By calculating 36 transition structures at the M06/6-311G*//B3LYP/6-31G* level of theory and employing the IEFPCM polarizable continuum model for solvation effects, this study expands the mechanistic knowledge and provides a model for understanding the diastereoselectivity in Lewis-acid-catalyzed Mukaiyama aldol reactions.


Asunto(s)
Alcoholes/síntesis química , Aldehídos/química , Cetonas/síntesis química , Ácidos de Lewis/química , Alcoholes/química , Catálisis , Cetonas/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...