Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(16): 7053-7066, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564260

RESUMEN

To study the effect of diamagnetic ions on magnetic interactions, utilizing a compartmental ligand (Z)-2-(hydroxymethyl)-4-methyl-6-((quinolin-8-ylimino)methyl)phenol (LH2), two different series of ZnII-LnIII complexes, namely the trinuclear series of [DyZn2(L)2(µ2-OAc)2(CH3OH)2]·NO3·MeOH (1), [TbZn2(L)2(µ2-OAc)2(CH3OH)2]·NO3·5MeOH·H2O (2), and [GdZn2(L)2(µ2-OAc)2(CH3OH)2]·NO3·MeOH·CHCl3 (3) and the tetranuclear series of [Dy2Zn2(LH)4(NO3)4(µ2OAc)]·NO3·MeOH·H2O (4), [Tb2Zn2(LH)4(NO3)4(µ2-OAc)]·NO3·MeOH·2H2O (5), and [Gd2Zn2(LH)4(NO3)4(µ2-OAc)]·NO3·MeOH·2H2O (6), were synthesized. Trinuclear ZnII-LnIII complexes 1-3 consist of one LnIII ion sandwiched between two peripheral ZnII ions forming a bent type ZnII-DyIII-ZnII array with an angle of 110.64°. Tetranuclear ZnII-LnIII complexes 4-6 are basically a combination of two dinuclear moieties of [LnZn(LH)2(NO3)2]+ connected by one bidentate bridging acetate ion in µ2-OAc coordination mode. The detailed magnetic analysis reveals that complexes 1 and 4 are single molecule magnets having energy barriers of 34.98 K and 46.71 K with relaxation times (τ0) of 5.05 × 10-4 s and 5.24 × 10-4 s, respectively. Ab initio calculations were employed to analyze the magnetic anisotropy and magnetic exchange interaction between the ZnII and LnIII centers with the aim of gaining better insights into the magnetic dynamics of complexes 1-6.

2.
IUCrdata ; 9(Pt 1): x240059, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38322029

RESUMEN

A new square-planar palladium complex salt hydrate, (C9H12NO)2[PdCl4]·0.5H2O, has been characterized. The asymmetric unit of the complex salt comprises two [PdCl4]2- dianions, four 2-hy-droxy-2,3-di-hydro-1H-inden-1-aminium cations, each derived from (1R,2S)-(+)-1-amino-indan-2-ol, and one water mol-ecule of crystallization. In the crystal, a two-dimensional layer parallel to (001) features a number of O-H⋯O, N-H⋯O, O-H⋯Cl and N-H⋯Cl hydrogen bonds.

3.
Dalton Trans ; 53(11): 5001-5009, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059528

RESUMEN

Oxygen evolution reaction (OER) electrocatalysts are frequently made from noble metal-based oxides like ruthenium/iridium oxides. However, because of their scarcity and high price, researchers are now focusing on creating innovative OER catalysts based on affordable transition metals that have improved electrical conductivity and accessibility to active sites. Metal-organic frameworks (MOFs), a unique class of inorganic materials with excellent physical and chemical properties, have witnessed significant progress in promising green energy systems. In this work, a novel mixed-ligand metal-organic framework [Co(µ-1κN,2κN'-BDP)(µ3-1κoo',2κo''2κo'''-BTC)]n·nH2O (BDP = boron-dipyrromethene or BODIPY; BTC = benzene tricarboxylate) denoted as CoBDPMOF has been synthesized, and its composites with different carbon materials have been designed. Compared to the pristine MOF, the composites showed enhanced electrocatalytic activity toward the oxygen evolution reaction (OER) in alkaline media. In addition, the CoBDPMOF with activated carbon showed the highest OER performance with a low Tafel slope (82 mV dec-1) and the highest j600 (59.8 mA cm-2), outperforming noble metal IrO2, the OER benchmark electrocatalyst. This study presents new insights into the design and application of CoBDPMOF-based materials for energy conversion and suggests promising avenues for further research and development in electrocatalysis.

4.
Dalton Trans ; 52(37): 13379-13386, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37675649

RESUMEN

Herein, we report our findings on 4-carbazole (CBZ)-appended salen-based indium complexes, CBZIn1 and CBZIn2, which feature diimine bridges exhibiting different electron-accepting properties. Notably, CBZIn2 exhibited a significantly higher photoluminescence quantum efficiency (PLQY, ΦPL) in toluene than CBZIn1, with a value over 15 times greater (ΦPL = 57.7% for CBZIn2; ΦPL = 3.7% for CBZIn1). In particular, in the rigid state of THF at 77 K, CBZIn2 exhibited a near-unity PLQY of 98.2%. Even in the PMMA film, CBZIn2 maintained a high level of PLQY (ΦPL = 70.2%). These results can be attributed to the highly efficient radiative decay process based on intramolecular charge-transfer (ICT) transition between the moderately twisted CBZ, characterized by its conformational rigidity and the 1,2-dicyanoethylene-bridged salen, which exhibits a strong electron-accepting ability. Furthermore, these findings are supported by theoretical calculations.

5.
Inorg Chem ; 62(26): 10279-10290, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37342900

RESUMEN

The catalytic redox activity of Cu(II) bound to the amino-terminal copper and nickel (ATCUN) binding motif (Xxx-Zzz-His, XZH) is stimulating the development of catalytic metallodrugs based on reactive oxygen species (ROS)-mediated biomolecule oxidation. However, low Cu(I) availability resulting from the strong Cu(II) binding affinity of the ATCUN motif is regarded as a limitation to efficient ROS generation. To address this, we replaced the imidazole moiety (pKa 7.0) of Gly-Gly-His-NH2 (GGHa, a canonical ATCUN peptide) with thiazole (pKa 2.7) and oxazole (pKa 0.8), yielding GGThia and GGOxa, respectively. A newly synthesized amino acid, Fmoc-3-(4-oxazolyl)-l-alanine, served as a histidine surrogate featuring an azole ring with the lowest pKa among known analogues. Despite similar square-planar Cu(II)-N4 geometries being observed for the three Cu(II)-ATCUN complexes by electron paramagnetic resonance spectroscopy and X-ray crystallography, the azole modification enabled the Cu(II)-ATCUN complexes to exhibit significant rate enhancement for ROS-mediated DNA cleavage. Further analyses based on Cu(I)/Cu(II) binding affinities, electrochemical measurements, density functional theory calculations, and X-ray absorption spectroscopy indicated that the azole modification enhanced the accessibility of the Cu(I) oxidation state during ROS generation. Our oxazole/thiazole-containing ATCUN motifs provide a new design strategy for peptide ligands with modulated N donor ability, with potential applications in the development of ROS-mediated metallodrugs.


Asunto(s)
Cobre , Histidina , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Oxazoles/farmacología , Péptidos
6.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241265

RESUMEN

(K0.5Na0.5)NbO3-based piezoelectric ceramics are of interest as a lead-free replacement for Pb(Zr,Ti)O3. In recent years, single crystals of (K0.5Na0.5)NbO3 with improved properties have been grown by the seed-free solid-state crystal growth method, in which the base composition is doped with a specific amount of donor dopant, inducing a few grains to grow abnormally large and form single crystals. Our laboratory experienced difficulty obtaining repeatable single crystal growth using this method. To try and overcome this problem, single crystals of 0.985(K0.5Na0.5)NbO3-0.015Ba1.05Nb0.77O3 and 0.985(K0.5Na0.5)NbO3-0.015Ba(Cu0.13Nb0.66)O3 were grown both by seed-free solid-state crystal growth and by seeded solid-state crystal growth using [001] and [110]-oriented KTaO3 seed crystals. X-ray diffraction was carried out on the bulk samples to confirm that single-crystal growth had taken place. Scanning electron microscopy was used to study sample microstructure. Chemical analysis was carried out using electron-probe microanalysis. The single crystal growth behaviour is explained using the mixed control mechanism of grain growth. Single crystals of (K0.5Na0.5)NbO3 could be grown by both seed-free and seeded solid-state crystal growth. Use of Ba(Cu0.13Nb0.66)O3 allowed a significant reduction in porosity in the single crystals. For both compositions, single crystal growth on [001]-oriented KTaO3 seed crystals was more extensive than previously reported in the literature. Large (~8 mm) and relatively dense (<8% porosity) single crystals of 0.985(K0.5Na0.5)NbO3-0.015Ba(Cu0.13Nb0.66)O3 can be grown using a [001]-oriented KTaO3 seed crystal. However, the problem of repeatable single crystal growth remains.

7.
Inorg Chem ; 62(5): 2326-2333, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36691700

RESUMEN

Electrochemical reorganization of complex structures is directly related to catalytic reactivity; thus, the geometric changes of catalysts induced by electron transfer should be considered to scrutinize the reaction mechanism. Herein, we studied electron-induced reorganization patterns of six-coordinate Co complexes with neutral N-donor ligands. Upon two-electron transfer into a Co center enclosed within a bulky π-acceptor ligand, the catalytic site exhibited different reorganization patterns depending on the ligand characteristics. While a bipyridyl ligand released Co-bound solvent (CH3CN) to open a reaction site, a phenanthroline ligand caused Co-Narm (side "arm" of NNN-ligand) bond dissociation. The first electron transfer occurred in the Co(II/I) reduction step and the second electron entered the bulky π-acceptor, of which redox steps were assigned from cyclic voltammograms, magnetic moment measurements, and DFT calculations. In comparison, the Co complex of [NNNNCH3-Co(CH3CN)3](PF6)2 ([1-(CH3CN)3](PF6)2) showed a high H2 evolution reactivity (HER), whereas a series of Co complexes with bulky π-acceptors such as [NNNNCH3-Co(L)(CH3CN)](PF6)2 (L = phen ([2-CH3CN](PF6)2), bpy ([3-CH3CN](PF6)2), [NNNNCH3-Co(tpy)](PF6)2 ([4](PF6)2), and [NNNCH2-Co(phen)(CH3CN)](PF6)2 ([5-CH3CN](PF6)2)) suppressed the HER but rather enhanced the CO2 reduction reaction. The metal-ligand cooperative redox steps enabled the shift of Co(I) reactivity toward CO2 reduction. Additionally, the amine pendant attached to the NNNNCH3-ligand could stabilize the CO2 reduction intermediate through the hydrogen-bonding interaction with the Co-CO2H adduct.

8.
ACS Omega ; 7(50): 46849-46858, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570214

RESUMEN

Grignard reagents featuring carbanion characteristics are mostly unreactive toward alkyl halides and require a catalyst for the coupling reaction. With the need to prepare p-(CH2=CH)C6H4CH2CH2CH2Cl on a large scale, the coupling reaction of p-(CH2=CH)C6H4MgCl with BrCH2CH2CH2Cl was attempted to screen the catalysts, and CuCN was determined to be the best catalyst affording the desired compound in 80% yield with no formation of Wurtz coupling side product CH2=CHC6H4-C6H4CH=CH2. The p-(CH2=CH)C6H4Cu(CN)MgCl species was proposed as an intermediate based on the X-ray structure of PhCu(CN)Mg(THF)4Cl. p-ClC6H4MgCl did not react with sterically encumbered R3SiCl (R = n-Bu or n-octyl). However, the reaction took place with the addition of 3 mol % CuCN catalyst, affording the desired compound p-ClC6H4SiR3. The structures of p-(CH2=CH)C6H4CH2CH2CH2MgCl and p-ClC6H4MgCl were also elucidated, which existed as an aggregate with MgCl2, suggesting that some portion of the Grignard reagents were possibly lost in the coupling reaction due to coprecipitation with the byproduct MgCl2. R3SiCl (R = n-Bu or n-octyl) was also prepared easily and economically with no formation of R4Si when SiCl4 was reacted with 4 equiv of RMgCl. Using the developed syntheses, [p-(CH2=CH)C6H4CH2CH2CH2]2Zn and iPrN[P(C6H4-p-SiR3)2]2, which are potentially useful compounds for the production of PS-block-PO-block-PS and 1-octene, respectively, were efficiently synthesized with substantial cost reductions.

9.
Plant Dis ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666217

RESUMEN

Tulip virus X (tulip virus X, TVX) is a member of the genus Potexvirus (family Alphaflexiviridae) and is a positive single-stranded RNA virus. TVX was described first in Scotland (Mowat 1982), followed by several countries (Yamaji et al. 2001; Tzanetakis et al. 2005; Ward et al. 2008; Dees et al. 2011; Sochacki and Komorowska 2012; Wylie et al. 2019). In April 2021, 86 whole tulip plants showing viral symptoms in leaves (mosaic, yellowing, and malformation) and flowers (color breaking) were collected in Chilgok, Chuncheon, Goseong, Yecheon and Yesan, Korea. Furthermore, high-throughput sequencing was performed to identify viruses that infect tulips in Korea. Total RNA was extracted from pooled the leaves and petals using a Maxwell® 16 LEV Plant RNA Kit (Promega, Madison, USA). We constructed a single library using the TruSeq Stranded Total RNA LT Sample Prep Kit for Plant (Illumina, San Diego, USA). The library was 100 bp paired-end sequenced using Illumina's NovaSeq 6000 (Macrogen, Seoul, Korea) and was assembled de novo using Trinity software version trinityrnaseq_r20140717, with default parameters. The contigs were annotated as in previous study (Lee et al. 2020), revealing a single contig each related to TVX, lily symptomless virus (LSV), and tulip breaking virus (TBV) was generated from 648 million total reads. The TVX-related contig (GenBank ON205948) consisting of 6,076 bp showed 99.52% nucleotide identity (6027/6056 bp) with TVX-J (GenBank AB066288). We conducted an RT-PCR assay to validate the presence of viruses with specific primers as TVX-F5093/R5624 (5'-CTATCCGGACTCATTCTACTTC/GTGCGTTCCAGATAAGCTTG-3'), LSV-F7013/R7338 (5'-CTTGGTCGACAGGGACATAAC/GATTGGAATTGTGCTTTTCAGC-3'), and TBV-F7515/R8116 (5'-GTGTGTCATGGATGATTGTTG/CAACTGATTTGCTACCGCTAG-3'). Consequently, TVX were detected in 13 of 86 samples. Moreover, LSV and TBV were detected in 15 and 26 samples, respectively. However, the yellowing and mosaic observed in the TVX infected samples were not observed in the LSV and TBV infected samples. Subsequently, two TVX amplicons were selected, cloned and sequenced. The obtained sequences were 532 bp and were named YS24 and YS38 (GenBank LC664027 and LC664028), respectively. The Korean isolates showed 98.68% (525/532 bp) and 99.62% (530/532 bp) identity with Australian isolate (GenBank MH886522) in BLASTn analysis. To bioassay for TVX, the infected tulip leaf tissue from which YS24 was obtained was used to sap-inoculate, in triplicates, 15 species of indicator plants (Nicotiana benthamiana, N. clevelandii, N. debneyi, N. glutinosa, N. rustica, N. tabacum, Datura stramonium, Glycine max, Phaseolus vulgaris, Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Cu. melo, Gomphrena globosa, and Tetragonia tetragonioides). After 14 days of inoculation, we observed distinct chlorotic spots on inoculated and upper leaves of C. quinoa, but no symptoms were observed in other indicator plants. In RT-PCR assay using TVX-specific primers, only C. quinoa showed a positive reaction. In previous studies, C. amaranticolor, C. quinoa, G. globosa, and N. benthamiana were known as the experimental host of TVX (Dees et al. 2011; Tzanetakis et al. 2005), but only C. quinoa was confirmed to be susceptible to the Korean isolate. Furthermore, transmission electron microscopy revealed typical flexuous rod-shaped viral particles in the inoculated C. quinoa. To our knowledge, this is the first report of TVX infecting tulips in Korea.

10.
Dalton Trans ; 51(11): 4257-4261, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35234791

RESUMEN

A zinc-based pyrene-porphyrin hybrid linear 1-D coordination polymer ZnPyrPorp with general formula [Zn(Pyr)(Porp)]n (Pyr = pyrene, Porp = tetraphenylporphyrin) was synthesized using a facile one-pot solvothermal method and fully characterized using different analytical techniques. The single-crystal X-ray diffraction (SCXRD) structure exhibited an interesting morphology with zinc metal coordinated to the porphyrin center, which was further bonded to the pyridine groups of the pyrene ligand, resulting in a linear 1-D-type polymer, with repeated Pyr-ZnTPP-Pyr units. The light-harvesting properties of the ZnPyrPorp polymer were investigated. Additionally, ZnPyrPorp showed excellent catalytic activity toward the photooxidation of 1,5-dihydroxynaphthalene.

11.
Inorg Chem ; 61(1): 32-36, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34928581

RESUMEN

From the chiral Schiff base tridentate ligand LPh, unusual acetonitrile-bridged dinuclear palladium complex 1 and organopalladium complex 1' were synthesized selectively by using acetonitrile and ethanol, respectively. The chiral tridentate Schiff base ligand was bound to the palladium metal center with different chelation modes ([ONO] for 1 and [CNO] for 1'). Complex 1 constitutes the first example of dinuclear metal complexes connected only by a bridging acetonitrile, in which an exceptionally short C≡N bond distance [0.945(12) Å] of bridged acetonitrile was observed. To study the influence of a phenyl group attached to an imine, the phenyl-free ligand LH was prepared and used. In that case, an acetonitrile bridge was not observed. Theoretical calculation studies supporting the formation of 1 and 1' are favored.

12.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 9): 887-890, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34584755

RESUMEN

The title compound, C18H12N2O2, was synthesized from a di-nitro-biphenyl-benzene derivative using a novel modification of the Cadogan reaction. The reaction has several possible ring-closed products and the title compound was separated as the major product. The X-ray crystallographic study revealed that the carbazole compound crystallizes in the monoclinic P space group and possesses a single closed Cadogan ring. There are two independent mol-ecules in the asymmetric unit. In the crystal, the mol-ecules are linked by N-H⋯O hydrogen bonding.

13.
Chem Commun (Camb) ; 57(61): 7497-7500, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34250531

RESUMEN

We describe electrochemical reactivity of a pincer-type [NNN-Fe(tBuNC)3](ClO4)2 complex. Upon electron reduction, the Fe(i) species experienced disproportionation to Fe(0) and Fe(ii). An electron-reduced Fe center dissociated a tBuNC ligand to make an open coordination site, where a proton could be transferred. The low-spin Fe center, assisted by isocyanide and a pyridine-based NNN-pincer ligand, catalyzed efficiently the proton reduction reaction. Also, a Lewis basic amine site in the side 'arm' of the NNN-pincer ligand lowered the free energy for the protonation of an Fe center during the proton reduction process. DFT calculations provided insight into a plausible catalytic pathway.

14.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068755

RESUMEN

Homogeneous olefin polymerization catalysts are activated in situ with a co-catalyst ([PhN(Me)2-H]+[B(C6F5)4]- or [Ph3C]+[B(C6F5)4]-) in bulk polymerization media. These co-catalysts are insoluble in hydrocarbon solvents, requiring excess co-catalyst (>3 eq.). Feeding the activated species as a solution in an aliphatic hydrocarbon solvent may be advantageous over the in situ activation method. In this study, highly pure and soluble ammonium tetrakis(pentafluorophenyl)borates ([Me(C18H37)2N-H]+[B(C6F5)4]- and [(C18H37)2NH2]+[B(C6F5)4]-) containing neither water nor Cl- salt impurities were prepared easily via the acid-base reaction of [PhN(Me)2-H]+[B(C6F5)4]- and the corresponding amine. Using the prepared ammonium salts, the activation reactions of commercial-process-relevant metallocene (rac-[ethylenebis(tetrahydroindenyl)]Zr(Me)2 (1-ZrMe2), [Ph2C(Cp)(3,6-tBu2Flu)]Hf(Me)2 (3-HfMe2), [Ph2C(Cp)(2,7-tBu2Flu)]Hf(Me)2 (4-HfMe2)) and half-metallocene complexes ([(η5-Me4C5)Si(Me)2(κ-NtBu)]Ti(Me)2 (5-TiMe2), [(η5-Me4C5)(C9H9(κ-N))]Ti(Me)2 (6-TiMe2), and [(η5-Me3C7H1S)(C10H11(κ-N))]Ti(Me)2 (7-TiMe2)) were monitored in C6D12 with 1H NMR spectroscopy. Stable [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]- species were cleanly generated from 1-ZrMe2, 3-HfMe2, and 4-HfMe2, while the species types generated from 5-TiMe2, 6-TiMe2, and 7-TiMe2 were unstable for subsequent transformation to other species (presumably, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]--type species). [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]--type species were also prepared from 5-TiCl(Me) and 6-TiCl(Me), which were newly prepared in this study. The prepared [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]--, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]--, and [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]--type species, which are soluble and stable in aliphatic hydrocarbon solvents, were highly active in ethylene/1-octene copolymerization performed in aliphatic hydrocarbon solvents.

15.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671782

RESUMEN

CrCl3(thf)3 is a common starting material in the synthesis of organometallic and coordination compounds of Cr. Deposited as an irregular solid with no possibility of recrystallization, it is not a purity guaranteed chemical, causing problems in some cases. In this work, we disclose a well-defined form of the THF adduct of CrCl3 ([CrCl2(µ-Cl)(thf)2]2), a crystalline solid, that enables structure determination by X-ray crystallography. The EA data and XRD pattern of the bulk agreed with the revealed structure. Moreover, its preparation procedure is facile: evacuation of CrCl3·6H2O at 100 °C, treatment with 6 equivalents of Me3SiCl in a minimal amount of THF, and crystallization from CH2Cl2. The ethylene tetramerization catalyst [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]- prepared using well-defined [CrCl2(µ-Cl)(thf)2]2 as a starting material exhibited a reliably high activity (6600 kg/g-Cr/h; 1-octene selectivity at 40 °C, 75%), while that of the one prepared using the impure CrCl3(thf)3 was inconsistent and relatively low (~3000 kg/g-Cr/h). By using well-defined [CrCl2(µ-Cl)(thf)2]2 as a Cr source, single crystals of [(CH3CN)4CrCl2]+[B(C6F5)4]- and [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2 were obtained, allowing structure determination by X-ray crystallography, which had been unsuccessful when the previously known CrCl3(thf)3 was used as the Cr source.


Asunto(s)
Cromo/química , Complejos de Coordinación/química , Furanos/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
16.
J Am Chem Soc ; 143(2): 925-933, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33410693

RESUMEN

Electrocatalytic conversion of CO2 into value-added products offers a new paradigm for a sustainable carbon economy. For active CO2 electrolysis, the single-atom Ni catalyst has been proposed as promising from experiments, but an idealized Ni-N4 site shows an unfavorable energetics from theory, leading to many debates on the chemical nature responsible for high activity. To resolve this conundrum, here we investigated CO2 electrolysis of Ni sites with well-defined coordination, tetraphenylporphyrin (N4-TPP) and 21-oxatetraphenylporphyrin (N3O-TPP). Advanced spectroscopic and computational studies revealed that the broken ligand-field symmetry is the key for active CO2 electrolysis, which subordinates an increase in the Ni redox potential yielding NiI. Along with their importance in activity, ligand-field symmetry and strength are directly related to the stability of the Ni center. This suggests the next quest for an activity-stability map in the domain of ligand-field strength, toward a rational ligand-field engineering of single-atom Ni catalysts for efficient CO2 electrolysis.

17.
Org Lett ; 22(23): 9225-9228, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33206542

RESUMEN

We report the short synthesis of two natural products, rosmaridiphenol and taxamairin B, from key intermediates 5a and 5b, which were prepared from enynals 8a and 9b, respectively, by using a gold-catalyzed cyclization reaction. This approach can be widely applied in the synthesis of [6,7,6]-fused tricyclic compounds found in many icetexane diterpenoids.

18.
Chem Sci ; 11(18): 4602-4607, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33133484

RESUMEN

Highly enantioselective conjugate addition reactions of arylboronic acids to 2-substituted chromones catalyzed by palladium complexes with new chiral Pyridine-Dihydroisoquinoline (PyDHIQ) ligands have been developed. These reactions provide highly enantioselective access to chromanones containing tetrasubstituted stereocenters. Various arylboronic acids and 2-substituted chromones can be used in the catalytic reaction to afford the chiral tetrasubstituted chromanones in good yields and excellent enantioselectivities (25 examples, up to 98% yields, up to 99% ee).

19.
Dalton Trans ; 49(38): 13198-13201, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32820771

RESUMEN

Activation of formaldehyde (FA) by frustrated Lewis pairs (FLPs) that are comprised of bulky phosphines having a carbazolyl donor-triarylboryl acceptor unit and B(C6F5)3 led to the formation of FLP-FA adducts that exhibit a thermally activated delayed fluorescence.

20.
Polymers (Basel) ; 12(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403453

RESUMEN

The pyridylamido hafnium complex (I) discovered at Dow is a flagship catalyst among postmetallocenes, which are used in the polyolefin industry for PO-chain growth from a chain transfer agent, dialkylzinc. In the present work, with the aim to block a possible deactivation process in prototype compound I, the corresponding derivatives were prepared. A series of pyridylamido Hf complexes were prepared by replacing the 2,6-diisopropylphenylamido part in I with various 2,6-R2C6H3N-moieties (R = cycloheptyl, cyclohexyl, cyclopentyl, 3-pentyl, ethyl, or Ph) or by replacing 2-iPrC6H4C(H)- in I with the simple PhC(H)-moiety. The isopropyl substituent in the 2-iPrC6H4C(H)-moiety influences not only the geometry of the structures (revealed by X-ray crystallography), but also catalytic performance. In the complexes bearing the 2-iPrC6H4C(H)-moiety, the chelation framework forms a plane; however, this framework is distorted in the complexes containing the PhC(H)-moiety. The ability to incorporate α-olefin decreased upon replacing 2-iPrC6H4C(H)-with the PhC(H)-moiety. The complexes carrying the 2,6-di(cycloheptyl)phenylamido or 2,6-di(cyclohexyl)phenylamido moiety (replacing the 2,6-diisopropylphenylamido part in I) showed somewhat higher activity with greater longevity than did prototype catalyst I.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...