Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3459, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658566

RESUMEN

Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications. Herein, electrohydrodynamic printing technique is used to fabricate fully solution-processed thin-film transistors with alkylated 3,4-dihydroxy-L-phenylalanine functionalized Ti3C2Tx (AD-MXene) as source, drain, and gate electrodes. The AD-MXene has excellent dispersion stability in ethanol, which is required for electrohydrodynamic printing, and maintains high electrical conductivity. It outperformed conventional vacuum-deposited Au and Al electrodes, providing thin-film transistors with good environmental stability due to its hydrophobicity. Further, thin-film transistors are integrated into logic gates and one-transistor-one-memory cells. This work, unveiling the ligand-functionalized MXenes' potential in printed electrical contacts, promotes environmentally robust MXene-based electronics (MXetronics).

2.
Small Methods ; 7(8): e2201715, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36855195

RESUMEN

MXenes are an emerging class of 2D materials with unique properties including metallic conductivity, mechanical flexibility, and surface tunability, which ensure their utility for diverse applications. However, the synthesis of MXenes with high crystallinity and atomic stoichiometry in a low-cost process is still challenging because of the difficulty in controlling the oxygen substitute in the precursors and final products of MXenes, which limits their academic understanding and practical applications. Here, a novel cost-effective method is reported to synthesize a highly crystalline and stoichiometric Ti3 C2 Tx MXene with minimum substitutional oxygen impurities by controlling the amount of excess carbon and time of high-energy milling in carbothermal reduction of recycled TiO2 source. The highest used content (2 wt%) of excess-carbon yields TiC with the highest carbon content and minimal oxygen substitutes, which leads to the Ti3 AlC2 MAX phase with improved crystallinity and atomic stoichiometry, and finally Ti3 C2 Tx MXene with the highest electrical conductivity (11738 S cm-1 ) and superior electromagnetic shielding effectiveness. Additionally, the effects of carbon content and substitutional oxygen on the physical properties of TiC and Ti3 AlC2 are elucidated by density-functional-theory calculations. This inexpensive TiO2 -based method of synthesizing high-quality Ti3 C2 Tx MXene can facilitate large-scale production and thus accelerate global research on MXenes.

3.
ACS Sens ; 7(8): 2225-2234, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35838305

RESUMEN

It is highly important to implement various semiconducting, such as n- or p-type, or conducting types of sensing behaviors to maximize the selectivity of gas sensors. To achieve this, researchers so far have utilized the n-p (or p-n) two-phase transition using doping techniques, where the addition of an extra transition phase provides the potential to greatly increase the sensing performance. Here, we report for the first time on an n-p-conductor three-phase transition of gas sensing behavior using Mo2CTx MXene, where the presence of organic intercalants and film thickness play a critical role. We found that 5-nm-thick Mo2CTx films with a tetramethylammonium hydroxide (TMAOH) intercalant displayed a p-type gas sensing response, while the films without the intercalant displayed a clear n-type response. Additionally, Mo2CTx films with thicknesses over 700 nm exhibited a conductor-type response, unlike the thinner films. It is expected that the three-phase transition was possible due to the unique and simultaneous presence of the intrinsic metallic conductivity and the high-density of surface functional groups of the MXene. We demonstrate that the gas response of Mo2CTx films containing tetramethylammonium (TMA) ions toward volatile organic compounds (VOCs), NH3, and NO2 is ∼30 times higher than that of deintercalated films, further showing the influence of intercalants on sensing performance. Also, DFT calculations show that the adsorption energy of NH3 and NO2 on Mo2CTx shifts from -0.973, -1.838 eV to -1.305, -2.750 eV, respectively, after TMA adsorption, demonstrating the influence of TMA in enhancing sensing performance.

4.
Bioresour Technol ; 350: 126943, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35247557

RESUMEN

Anaerobic sequential batch tests treating phenol and benzoate were conducted to evaluate the potential of magnetite supplementation to improve methanogenic degradation of phenol and benzoate, and to identify active microbial communities under each condition. Specific CH4 production rates during anaerobic digestion were 218.5 mL CH4/g VSS/d on phenol and 517.6 mL CH4/g VSS/d on benzoate. Magnetite supplementation significantly increased methanogenic degradation of phenol by 9.0-68.0% in CH4 production rate, and decreased lag time by 7.9-48.0%, with no significant reduction in CH4 yield. Syntrophorhabdus, Sporotomaculum, Syntrophus, Syntrophomonas, Peptoclostridium, Soehngenia, Mesotoga, Geobacter, Methanosaeta, Methanoculleus, and Methanospirillum were revealed as active microbial communities involved in anaerobic digestion of phenol and benzoate. Magnetite-mediated direct interspecies electron transfer between Geobacter, Peptoclostridium, and Methanosaeta harundinacea could contribute to this improvement.


Asunto(s)
Óxido Ferrosoférrico , Microbiota , Anaerobiosis , Benzoatos , Reactores Biológicos , Suplementos Dietéticos , Óxido Ferrosoférrico/metabolismo , Metano/metabolismo , Fenol
5.
J Basic Microbiol ; 55(10): 1159-67, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175341

RESUMEN

To better understand the mechanisms of development of harmful algal blooms (HABs), accurate estimates of species-specific in situ growth rates are needed. HABs are caused by rapid cell division by the causative microorganisms. To accurately estimate the in situ growth rates of harmful algae having non-uniform and/or irregular cell cycles, we modified a standard equation based on the cell cycle, and calculated the in situ growth rate to describe the process of bloom development in nature. Sampling of a developing bloom of Heterosigma akashiwo in Pohang Bay, Korea, was conducted every 3 h from 15:00 on August 2 to 07:00 on August 4, 2006. The amount of H. akashiwo DNA was measured using flow cytometry following tyramide signal amplification-fluorescence in situ hybridization. On August 2, the percentage of G1 phase cells decreased from 15:00 to 19:00 then increased until 22:00; it then decreased until 07:00 on August 3, followed by an increase to 10:00. This indicates the ability of the cells in nature to undergo more than one round of division per day. During the following night two rounds of division did not occur. The in situ growth rates estimated using the modified equation ranged from 0.31 to 0.53 d(-1) . We conclude that the use of this equation enables more accurate estimates of bloom formation by rapidly dividing cells.


Asunto(s)
Ciclo Celular , División Celular , Floraciones de Algas Nocivas/fisiología , Hibridación Fluorescente in Situ , Especificidad de la Especie , Estramenopilos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...