Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 186: 71-80, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956903

RESUMEN

Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Cardiomiopatías/metabolismo
2.
Stem Cell Reports ; 18(9): 1811-1826, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37595583

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes life-threatening arrhythmias and myocardial dysfunction. Pathogenic variants in Plakophilin-2 (PKP2), a desmosome component within specialized cardiac cell junctions, cause the majority of ACM cases. However, the molecular mechanisms by which PKP2 variants induce disease phenotypes remain unclear. Here we built bioengineered platforms using genetically modified human induced pluripotent stem cell-derived cardiomyocytes to model the early spatiotemporal process of cardiomyocyte junction assembly in vitro. Heterozygosity for truncating variant PKP2R413X reduced Wnt/ß-catenin signaling, impaired myofibrillogenesis, delayed mechanical coupling, and reduced calcium wave velocity in engineered tissues. These abnormalities were ameliorated by SB216763, which activated Wnt/ß-catenin signaling, improved cytoskeletal organization, restored cell junction integrity in cell pairs, and improved calcium wave velocity in engineered tissues. Together, these findings highlight the therapeutic potential of modulating Wnt/ß-catenin signaling in a human model of ACM.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , beta Catenina/genética , Señalización del Calcio , Uniones Intercelulares , Miocitos Cardíacos , Placofilinas/genética
3.
Nat Mater ; 22(8): 1039-1046, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37500957

RESUMEN

Hydrogels are attractive materials for tissue engineering, but efforts to date have shown limited ability to produce the microstructural features necessary to promote cellular self-organization into hierarchical three-dimensional (3D) organ models. Here we develop a hydrogel ink containing prefabricated gelatin fibres to print 3D organ-level scaffolds that recapitulate the intra- and intercellular organization of the heart. The addition of prefabricated gelatin fibres to hydrogels enables the tailoring of the ink rheology, allowing for a controlled sol-gel transition to achieve precise printing of free-standing 3D structures without additional supporting materials. Shear-induced alignment of fibres during ink extrusion provides microscale geometric cues that promote the self-organization of cultured human cardiomyocytes into anisotropic muscular tissues in vitro. The resulting 3D-printed ventricle in vitro model exhibited biomimetic anisotropic electrophysiological and contractile properties.


Asunto(s)
Gelatina , Andamios del Tejido , Humanos , Andamios del Tejido/química , Gelatina/química , Miocitos Cardíacos , Ingeniería de Tejidos/métodos , Hidrogeles/química , Impresión Tridimensional
4.
Science ; 377(6602): 180-185, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857545

RESUMEN

Helical alignments within the heart's musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart's musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.


Asunto(s)
Ventrículos Cardíacos , Nanofibras , Diseño de Prótesis , Ingeniería de Tejidos , Animales , Humanos , Miocitos Cardíacos , Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido
5.
Science ; 375(6581): 639-647, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143298

RESUMEN

Biohybrid systems have been developed to better understand the design principles and coordination mechanisms of biological systems. We consider whether two functional regulatory features of the heart-mechanoelectrical signaling and automaticity-could be transferred to a synthetic analog of another fluid transport system: a swimming fish. By leveraging cardiac mechanoelectrical signaling, we recreated reciprocal contraction and relaxation in a muscular bilayer construct where each contraction occurs automatically as a response to the stretching of an antagonistic muscle pair. Further, to entrain this closed-loop actuation cycle, we engineered an electrically autonomous pacing node, which enhanced spontaneous contraction. The biohybrid fish equipped with intrinsic control strategies demonstrated self-sustained body-caudal fin swimming, highlighting the role of feedback mechanisms in muscular pumps such as the heart and muscles.


Asunto(s)
Fenómenos Biomecánicos , Contracción Muscular , Músculos/fisiología , Miocitos Cardíacos/fisiología , Aletas de Animales/fisiología , Animales , Biomimética , Biofisica , Peces/fisiología , Humanos , Robótica , Natación , Ingeniería de Tejidos
6.
Adv Healthc Mater ; 11(4): e2101599, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800312

RESUMEN

The unfolded states of fibronectin (FN) subsequently induce the formation of an extracellular matrix (ECM) fibrillar network, which is necessary to generate new substitutive tissues. Here, the authors demonstrate that negatively charged small unilamellar vesicles (SUVs) qualify as candidates for FN delivery due to their remarkable effects on the autonomous binding and unfolding of FN, which leads to increased tissue regeneration. In vitro experiments revealed that the FN-SUV complex remarkably increased the attachment, differentiation, and migration of fibroblasts. The potential utilization of this complex in vivo to treat inflammatory colon diseases is also described based on results obtained for ameliorated conditions in rats with ulcerative colitis (UC) that had been treated with the FN-SUV complex. Their findings provide a new ECM-delivery platform for ECM-based therapeutic applications and suggest that properly designed SUVs may be an unprecedented FN-delivery system that is highly effective in treating UC and inflammatory bowel diseases.


Asunto(s)
Matriz Extracelular , Liposomas , Animales , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Liposomas/farmacología , Ratas , Cicatrización de Heridas
7.
Langmuir ; 36(26): 7259-7267, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460498

RESUMEN

Collagen is a skeleton of native extracellular matrix (ECM) that is known to provide mechanical and structural stability. In an attempt to develop a new connective cellular model with the surrounding ECM without further experimental complications, such as the reconstitution of ECM receptors, we designed the experiments and discovered that the fibrillogenesis of membrane-bound collagen is not spontaneous as it is in the form of free collagen in bulk solution. The confocal microscopic results suggest that cholesterol is a crucial component that facilitates the fibril formation on the membrane surface. In situ X-ray and neutron reflectivity on Langmuir monolayer and solid-supported lipid bilayer models, respectively, reveal two features of cholesterol effects on the collagen fibril formation. Mainly, cholesterol increases the lateral lipid headgroup separation on the membrane surface, which promotes the association degree of collagen monomers. It also enhances the elastic modulus of the membrane to impede membrane filtration by the collagen assemblies.


Asunto(s)
Colágeno , Matriz Extracelular , Colesterol , Citoesqueleto , Módulo de Elasticidad
8.
Circulation ; 140(5): 390-404, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311300

RESUMEN

BACKGROUND: Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS: Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS: In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS: Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Ingeniería de Tejidos/métodos , Potenciales de Acción/fisiología , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/química , Miocitos Cardíacos/química , Optogenética/métodos
9.
Nat Biotechnol ; 36(6): 530-535, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29806849

RESUMEN

Inside cells, complex metabolic reactions are distributed across the modular compartments of organelles. Reactions in organelles have been recapitulated in vitro by reconstituting functional protein machineries into membrane systems. However, maintaining and controlling these reactions is challenging. Here we designed, built, and tested a switchable, light-harvesting organelle that provides both a sustainable energy source and a means of directing intravesicular reactions. An ATP (ATP) synthase and two photoconverters (plant-derived photosystem II and bacteria-derived proteorhodopsin) enable ATP synthesis. Independent optical activation of the two photoconverters allows dynamic control of ATP synthesis: red light facilitates and green light impedes ATP synthesis. We encapsulated the photosynthetic organelles in a giant vesicle to form a protocellular system and demonstrated optical control of two ATP-dependent reactions, carbon fixation and actin polymerization, with the latter altering outer vesicle morphology. Switchable photosynthetic organelles may enable the development of biomimetic vesicle systems with regulatory networks that exhibit homeostasis and complex cellular behaviors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Artificiales/metabolismo , Fotosíntesis , Actinas/metabolismo , Biomimética , Biotecnología , Ciclo del Carbono , Modelos Biológicos , Fenómenos Ópticos , Complejo de Proteína del Fotosistema II/metabolismo , Proteolípidos/metabolismo , Rodopsinas Microbianas/metabolismo
10.
Sci Rep ; 8(1): 1913, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382927

RESUMEN

The extracellular matrix (ECM) consists of polymerized protein monomers that form a unique fibrous network providing stability and structural support to surrounding cells. We harnessed the fibrillogenesis mechanisms of naturally occurring ECM proteins to produce artificial fibers with a heterogeneous protein makeup. Using ECM proteins as fibril building blocks, we created uniquely structured multi-component ECM fibers. Sequential incubation of fibronectin (FN) and laminin (LAM) resulted in self-assembly into locally stacked fibers. In contrast, simultaneous incubation of FN with LAM or collagen (COL) produced molecularly stacked multi-component fibers because both proteins share a similar assembly mechanism or possess binding domains specific to each other. Sequential incubation of COL on FN fibers resulted in fibers with sandwiched layers because COL molecules bind to the external surface of FN fibers. By choosing proteins for incubation according to the interplay of their fibrillogenesis mechanisms and their binding domains (exposed when they unfold), we were able to create ECM protein fibers that have never before been observed.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Sitios de Unión/fisiología , Colágeno/metabolismo , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo
11.
Acta Biomater ; 65: 317-326, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29054822

RESUMEN

Polycations are used for a number of biological applications, including antibiotics and gene therapy. One aspect of the use of polycation gene carriers such as polyethylenemine (PEI) in gene therapy that is not well understood is their ability to escape from the vesicles they are internalized in. Here, in an attempt to gain a better understanding of PEI interaction with endosomal lipids under osmotic stress, we performed investigations using monolayers and vesicles derived from a mixture of neutral and negative lipids (1,2-dipalmitoylphosphatidylcholine (DPPC) and bis(monoacylglycero)phosphate (BMP), respectively). X-ray reflectivity (XR) and Langmuir trough measurements confirmed PEI adsorption to the negatively charged membrane. Confocal microscopy imaging indicated that PEI adsorption actually increases the overall integrity of the DPPC/BMP vesicle against osmotic stresses while also causing overall deformation and permeabilization of the lipid membrane, thus leading to leakage of contents from the interior of the vesicle. These confocal microscopy observations were also supported by data gathered by dynamic light scattering (DLS). STATEMENT OF SIGNIFICANCE: In recent decades, researchers have investigated polyamine-based gene delivery systems as useful alternatives to viral gene carriers. One step that is crucial to the performance of polyamine gene carriers such as polyethylenemine (PEI) is escape from late endosomal vesicles during intracellular delivery. However, the ability of polyamine/DNA polyplexes to effectively escape from endosomes is a little-understood part of the gene therapy techniques that use these polyplexes. Here, we performed investigations using monolayers and vesicles derived from a mixture of neutral and negative lipids (1,2-dipalmitoylphosphatidylcholine (DPPC) and bis(monoacylglycero)phosphate (BMP), respectively) as model systems for late endosomes in order to examine the interactions of PEI with the DPPC/BMP membranes and study the subsequent effects on the stability and permeability of these membranes.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos , Lisofosfolípidos/química , Monoglicéridos/química , Presión Osmótica , Polietileneimina/química , Adsorción , Técnicas de Transferencia de Gen , Microscopía Confocal , Permeabilidad , Dispersión de Radiación
12.
ACS Appl Mater Interfaces ; 6(2): 1145-51, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24372274

RESUMEN

We report, for the first time, the synthesis of the Y3Al5O12:Ce(3+) hollow phosphor particles with a uniform size distribution via the Kirkendall effect, characterized by using a combination of in situ X-ray diffraction and high-resolution transmission electron microscopy analyses as a function of calcination temperature. The formation of hollow Y3Al5O12:Ce(3+) particles was revealed to originate from the different diffusivities of atoms (Al and Y) in a diffusion couple, causing a supersaturation of lattice vacancies. The optical characterization using photoluminescence spectroscopy and scanning confocal microscopy clearly showed the evidence of YAG (yttrium aluminum garnet) hollow shells with emission at 545 nm. Another advantage of this methodology is that the size of hollow shells can be tunable by changing the size of initial nanotemplates that are spherical aluminum hydroxide nanoparticles. In this study, we synthesized the hollow shell particles with average diameters of 140 and 600 nm as representatives to show the range of particle sizes. Because of the unique structural and optical properties, the Y3Al5O12:Ce(3+) hollow shells can be another alternative to luminescence materials such as quantum dots and organic dyes, which promote their utilization in various fields, including optoelectronic and nanobio devices.

13.
ACS Appl Mater Interfaces ; 5(5): 1612-8, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23398563

RESUMEN

Organic photovoltaic devices are difficult to commercialize because of their vulnerability to chemical degradation related with oxygen and water and to physical degradation with aging at high temperatures. We investigated the photophysical degradation behaviors of a series of poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PC60BM) bulk heterojunctions (BHJs) as a model system according to the donor-acceptor ratio. We found that the optimum P3HT:PC60BM ratio in terms of long-term stability differs from that in terms of initial cell efficiency. On the basis of cell performance decays and time-resolved photoluminescence measurements, we investigated the effects of oxygen and material self-aggregation on the stability of an organic photovoltaic device. We also observed the changes in morphological geometry and analyzed the surface elements to verify the mechanisms of degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...