Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 19309-19317, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591355

RESUMEN

We demonstrate that the transfer characteristics of electrolyte-gated transistors (EGTs) with polythiophene semiconductor channels are a strong function of gate/electrolyte interfacial contact area, i.e., gate size. Polythiophene EGTs with gate/electrolyte areas much larger than the channel/electrolyte areas show a clear peak in the drain current vs gate voltage (ID-VG) behavior, as well as peak voltage hysteresis between the forward and reverse VG sweeps. Polythiophene EGTs with small gate/electrolyte areas, on the other hand, exhibit current plateaus in the ID-VG behavior and a gate-size-dependent hysteresis loop between turn on and off. The qualitatively different transport behaviors are attributed to the relative sizes of the gate/electrolyte and channel/electrolyte interface capacitances, which are proportional to interfacial area. These interfacial capacitances are in series with each other such that the total capacitance of the full gate/electrolyte/channel stack is dominated by the interface with the smallest capacitance or area. For EGTs with large gates, most of the applied VG is dropped at the channel/electrolyte interface, leading to very high charge accumulations, up to ∼0.3 holes per ring (hpr) in the case of polythiophene semiconductors. The large charge density results in sub-band-filling and a marked decrease in hole mobility, giving rise to the peak in ID-VG. For EGTs with small gates, hole accumulation saturates near 0.15 hpr, band-filling does not occur, and hole mobility is maintained at a fixed value, which leads to the ID plateau. Potential drops at the interfaces are confirmed by in situ potential measurements inside a gate/electrolyte/polymer semiconductor stack. Hole accumulations are measured with gate current-gate voltage (IG-VG) measurements acquired simultaneously with the ID-VG characteristics. Overall, our measurements demonstrate that remarkably different ID behavior can be obtained for polythiophene EGTs by controlling the magnitude of the gate-electrolyte interfacial capacitance.

2.
Materials (Basel) ; 17(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38473572

RESUMEN

The phenomenon of hydrogen embrittlement (HE) in metals and alloys, which determines the performance of components in hydrogen environments, has recently been drawing considerable attention. This study explores the interplay between strain rates and solute hydrogen in inducing HE of Ti6Al4V alloy. For the hydrogen-charged sample, as the strain rate was decreased from 10-2/s to 10-5/s, the ductility decreased significantly, but the HE effect on mechanical strength was negligible. The low strain rate (LSR) conditions facilitated the development of high-angle grain boundaries, providing more pathways for hydrogen diffusion and accumulation. The presence of solute hydrogen intensified the formation of nano/micro-voids and intergranular cracking tendencies, with micro-crack occurrences observed exclusively in the LSR conditions. These factors expanded the brittle hydrogen-damaged region more deeply into the interior of the lattice. This, in turn, accelerated both crack initiation and intergranular crack propagation, finally resulting in a considerable HE effect and a reduction in ductility at the LSR. The current study underscores the influence of strain rate on HE, enhancing the predictability of longevity and improving the reliability of components operating in hydrogen-rich environments under various loading conditions.

3.
Adv Mater ; 35(51): e2307206, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923398

RESUMEN

Development of a novel high performing inorganic p-type thin film transistor could pave the way for new transparent electronic devices. This complements the widely commercialized n-type counterparts, indium-gallium-zinc-oxide (IGZO). Of the few potential candidates, copper monoiodide (CuI) stands out. It boasts visible light transparency and high intrinsic hole mobility (>40 cm2 V-1 s-1 ), and is suitable for various low-temperature processes. However, the performance of reported CuI transistors is still below expected mobility, mainly due to the uncontrolled excess charge- and defect-scattering from thermodynamically favored formation of copper and iodine vacancies. Here, a solution-processed CuI transistor with a significantly improved mobility is reported. This enhancement is achieved through a room-temperature vacancy-engineering processing strategy on high-k dielectrics, sodium-embedded alumina. A thorough set of chemical, structural, optical, and electrical analyses elucidates the processing-dependent vacancy-modulation and its corresponding transport mechanism in CuI. This encompasses defect- and phonon-scattering, as well as the delocalization of charges in crystalline domains. As a result, the optimized CuI thin film transistors exhibit exceptionally high hole mobility of 21.6 ± 4.5 cm2 V-1 s-1 . Further, the successful operation of IGZO-CuI complementary logic gates confirms the applicability of the device.

4.
ACS Appl Mater Interfaces ; 15(35): 41688-41696, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37615163

RESUMEN

Due to their promising advantages over classical rigid devices, the development of display textiles has exciting potential for various fields, including sensor technology, healthcare, and communication. To realize display textiles, it is necessary to prepare light-emitting building blocks at the fiber level and then weave or knit them to form the desired textile structures. However, from a practical viewpoint, it is difficult to continuously weave functional fibers containing light-emitting devices using conventional textile technologies. To address this issue, we introduced fibrous modules that can be assembled like LEGO blocks to realize textile displays. A unique feature of this work is that the light-emitting pixels are generated through a simple contact between modular electrochemiluminescent (ECL) fibers. Each fiber is composed of a single metallic wire coated with a gel-type ECL electrolyte that is formed by using a simple dip-coating method in ambient air. The sticky nature of the gel electrolyte enables the construction of light-emitting pixels through the simple physical contact of two or more fiber modules without the need for external pressure or heating. The diversity of this technology offers in terms of fibrous module arrangements and assembly can provide various options for designing the geometries of light-emitting pixels. We have implemented this technique to demonstrate not only a 1 × 1 pixel but also 3 × 3 pixels with an irregular shape. These results demonstrate that the unique strategy for display devices developed in this work provides a feasible approach for various electronic and optical textile applications.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36301020

RESUMEN

Electrolyte-gated transistors (EGTs) operating at low voltages have attracted significant attention in widespread applications, including neuromorphic devices, nonvolatile memories, chemical/biosensors, and printed electronics. To increase the practicality of the EGTs in electronic circuits, systematic control of threshold voltage (Vth), which determines the power consumption and noise margin of the circuits, is essential. In this study, we present a simple strategy for systematically tuning Vth to almost half of the operating potential range of the EGT by controlling the electrochemical doping of electrolyte ions into organic p-type semiconductors. The type of anion in the ionogel determines Vth as well as other transistor characteristics, such as the subthreshold swing and mobility, because the positive hole carriers are the majority carriers. More importantly, Vth can be finely controlled by binary anion doping using ionogels with two anions with varying molar fractions at a fixed cation. In addition, the binary anion doping successfully controls the inversion characteristics of ion-gated inverters. As unlimited combinations of ion pairs are possible for ionogels, this study opens a route for controlling the device characteristics to expand the practicality and applicability of ionogel-based EGTs for next-generation ionic/electronic devices.

6.
ACS Appl Mater Interfaces ; 14(15): 17709-17718, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35389205

RESUMEN

Herein, a new concept of device architecture to fabricate fibrous light-emitting devices is demonstrated based on an electrochemiluminescence (ECL) material for an electronic textile system. A unique feature of this work is that instead of conventional semiconductor materials, such as organics, perovskites, and quantum dots for fibrous light emitting devices, a solid-state ECL electrolyte gel is employed as a light-emitting layer. The solid-state ECL gel is prepared from a precursor solution composed of matrix polymer, ionic liquid, and ECL luminophore. From this, we successfully realize light-emitting fibers through a simple and cost-effective single-step dip-coating method in ambient air, without complicated multistep vacuum processes. The resulting fiber devices reliably operated under applied AC bias of ±2.5 V and showed luminance of 47 cd m-2. More importantly, the light-emitting fibers exhibited outstanding water resistance without any passivation layers, owing to the water immiscible and hydrophobic nature of the ECL gel. In addition, because of their simple structure, the fiber devices can be easily deformed and woven together with commercial knitwear by hand. Therefore, these results suggest a promising strategy for the development of practical fiber displays and contribute to progress in electronic textile technology.

7.
ACS Nano ; 16(2): 2271-2281, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35060720

RESUMEN

For next-generation wearable and implantable devices, energy storage devices should be soft and mechanically deformable and easily printable on any substrate or active devices. Herein, we introduce a fully stretchable lithium-ion battery system for free-form configurations in which all components, including electrodes, current collectors, separators, and encapsulants, are intrinsically stretchable and printable. The stretchable electrode acquires intrinsic stretchability and improved interfacial adhesion with the active materials via a functionalized physically cross-linked organogel as a stretchable binder and separator. Intrinsically stretchable current collectors are fabricated in the form of nanocomposites consisting of a matrix with excellent barrier properties without swelling in organic electrolytes and nanostructure-controlled multimodal conductive fillers. Due to structural and materials freedoms, we successfully fabricate several types of stretchable lithium-ion battery that reliably operates under various stretch deformations with capacity and rate capability comparable with a nonstretchable battery over 2.5 mWh cm-2 at 0.5 C, even under high mass loading conditions over 10 mg cm-2, including stacked configuration, direct integration on both sides of a stretch fabric, and application of various electrode materials and electrolytes. Especially, our stretchable battery printed on a stretch fabric also exhibits high performance and stretch/long-term stabilities in the air even with wearing and pulling.

8.
Macromol Rapid Commun ; 43(7): e2100686, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35084074

RESUMEN

Interest in resistive random access memory (RRAM) has grown rapidly in recent years for realizing ultrahigh density data storage devices. However, sneak currents in these devices can result in misreading of the data, thus limiting the applicability of RRAM. Complementary resistive switching (CRS) memory consisting of two antiserial RRAMs can considerably reduce sneak currents; however, complicated device architectures and manufacturing processes still remain as challenges. Herein, an effective and simple approach for fabricating CRS memory devices using self-assembled block copolymer micelles is reported. Cu ions are selectively placed in the core of polystyrene-block-poly(2-vinylpyridine) spherical micelles, and a hexagonally packed micelle monolayer is prepared through spin-coating. The micelle monolayer can be a symmetrical resistive switching layer, because the micelles and Cu act as dielectric and active metals in memory devices, respectively. The locally enhanced electric field and Joule heating achieved by the structured Cu atoms inside the micelles promote metal ionization and ion migration in a controlled manner, thus allowing for position selectivity during resistive switching. The micelle-based memory device exhibits stable and reliable CRS behavior, with a nonoverlapping and narrow distribution of threshold voltages. Therefore, this approach is promising for fabricating CRS memory devices for high-performance and ultrahigh-density RRAM applications.

9.
Adv Mater ; 33(5): e2005456, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33345385

RESUMEN

Light-emitting transistors (LETs) have attracted a significant amount of interest as multifunctional building blocks for next-generation electronics and optoelectronic devices. However, it is challenging to obtain LETs with a high carrier mobility and uniform light-emission because the semiconductor channel should provide both the electrical charge transport and optical light-emission, and typical emissive semiconductors have low, imbalanced carrier mobilities. In this work, a novel device platform that adapts the electrochemiluminescence (ECL) principle in LETs, referred to as an ECL transistor (ECLT) is proposed. ECL is a light-emission phenomenon from electrochemically excited luminophores generated by redox reactions. A solid-state ECL electrolyte consisting of a network-forming polymer, ionic liquid, luminophore, and co-reactant is employed as the light-emitting gate insulator of the ECLT. Based on this construction, high-performance LETs that make use of various conventional non-emissive semiconductors (e.g., poly(3-hexylthiophene), zinc oxide, and reduced graphene oxide) are successfully demonstrated. All the devices exhibit a high mobility (0.9-10 cm2 V-1 s-1 ) and a uniform light-emission. This innovative approach demonstrates a novel LET platform and provides a promising pathway to achieve significant breakthroughs to develop electronic circuits and optoelectronic applications.

10.
ACS Appl Mater Interfaces ; 12(13): 15464-15471, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32156106

RESUMEN

High-temperature durability is critical for application of organic materials in electronic devices that operate in harsh environments. In this work, thermostable physically cross-linked polymer electrolytes, or thermostable physical ion gels, were successfully developed using crystallization-induced phase separation of semicrystalline polyamides (PAs) in an ionic liquid (IL). In these ion gels, phase-separated PA crystals act as network junctions and enable the ion gels to maintain their mechanical integrity up to 180 °C. ILs and ion gels are suitable electrolyte candidates for thin-film devices operating at high temperatures because they outperform other electrolytes that use aqueous and organic solvents, owing to their superior thermal stability and nonvolatility. In addition to thermal stability, the PA gels exhibited high ionic conductivity (∼1 mS/cm) and specific capacitance (∼10 µF/cm2) at room temperature; these values increased significantly with increasing temperature, while the gel retained its solid-state mechanical integrity. These thermostable ion gels were successfully used as an electrolyte gate dielectric in organic thin-film transistors that operate at high temperatures (ca. 150 °C) and low voltages (<1 V). The transistors gated with the dielectrics had a high on/off current ratio of (3.04 ± 0.24) × 105 and a hole mobility of 2.83 ± 0.20 cm2/V·s. By contrast, conventional physical ion gels based on semicrystalline polymers of poly(vinylidene fluoride-co-hexafluoropropylene) and polyvinylidene fluoride lost their mechanical integrity and dewetted from a semiconductor channel at lower temperatures. Therefore, these results demonstrate an effective method of generating thermally stable, mechanically robust, and highly conductive solid polymer electrolytes for electronic and electrochemical devices operating in a wide temperature range.

11.
ACS Appl Mater Interfaces ; 11(43): 40243-40251, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31592635

RESUMEN

The development of p-channel devices with comparable electrical performances to their n-channel counterparts has been delayed due to the lack of p-type semiconductor materials and device optimization. In this present work, we successfully demonstrated p-channel inorganic thin-film transistors (TFTs) with high hole mobilities similar to the values of n-channel devices. To boost the device performance, the solution-processed copper iodide (CuI) semiconductor was gated by a solid polymer electrolyte. The electrolyte gating could realize electrical double layer (EDL) formation and a three-dimensional carrier transport channel and thus substantially increased charge accumulation in the channel region and realized a high mobility above 90 cm2/(V s) (45.12 ± 22.19 cm2/(V s) on average). In addition, due to the high-capacitance EDL formed by electrolyte gating, the CuI TFTs exhibited a low operation voltage below 0.5 V (Vth = -0.045 V) and a high ON current level of 0.7 mA with an ON/OFF ratio of 1.52 × 103. We also evaluated the operational stabilities of CuI TFTs and the devices showed 80% retention under electrical/mechanical stress. All the active layers of the transistors were fabricated by solution processes at low temperatures (<100 °C), indicating their potential use for flexible, wearable, and high-performance electronic applications.

12.
ACS Appl Mater Interfaces ; 10(47): 40672-40680, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30277059

RESUMEN

Organic/inorganic hybrid complementary inverters operating at low voltages (1 V or less) were fabricated by transfer-stamping organic p-type poly(3-hexylthiophene) (P3HT) and inorganic n-type zinc oxide (ZnO) electrolyte-gated transistors (EGTs). A semicrystalline homopolymer-based gel electrolyte, or an ionogel, was also transfer-stamped on the semiconductors for use as a high-capacitance gate insulator. For the ionogel stamping, the thermoreversible crystallization of phase-separated homopolymer crystals, which act as network cross-links, was employed to improve the contact between the gel and the semiconductor channel. The homopolymer ionogel-gated P3HT transistor exhibited a high hole mobility of 2.81 cm2/(V s), and the ionogel-gated n-type ZnO transistors also showed a high electron mobility of 2.06 cm2/(V s). The transfer-stamped hybrid complementary inverter based on the P3HT and ZnO EGTs showed a low-voltage operation with appropriate inversion characteristics including a high voltage gain of ∼18. These results demonstrate that the transfer-stamping strategy provides a facile and reliable processing route for fabricating electrolyte-gated transistors and logic circuits.

13.
ACS Appl Mater Interfaces ; 10(11): 9563-9570, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29468869

RESUMEN

We present nonvolatile transistor memory devices that rely on the formation of electric double layer (EDL) at the semiconductor-electrolyte interface. The two critical functional components of the devices are the ion gel electrolyte and gold nanoparticles (NPs). The ion gel electrolyte contains ionic species for EDL formation that allow inducing charges in the semiconductor-electrolyte interface. The gold NPs inserted between the ion gel and the channel layer serve as trapping sites to the induced charges to store the electrical input signals. Two different types of gold NPs were used: one prepared using direct thermal evaporation and the other prepared using a colloidal process. The organic ligands attached onto the colloidal gold NPs prevented the escape of the trapped charges from the particles and thus enhanced the retention characteristics of the programmed/erased signals. The low-voltage-driven EDL formation resulted in a programmed/erased memory signal ratio larger than 103 from the nonvolatile indium-gallium-zinc oxide transistor memory devices at voltages below 10 V, which could be held for >105 s. The utility of the electrolytes to operate memory devices demonstrated herein should provide an alternative strategy to realize cheap, portable electronic devices powered with thin-film batteries.

14.
ACS Appl Mater Interfaces ; 9(49): 42978-42985, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29144127

RESUMEN

Two types of thin-film electrochemical devices (electrolyte-gated transistors and electrochemical light-emitting cells) are demonstrated using area-controllable ionogel patches generated by transfer-stamping. For the successful transfer of ionogel patches on various target substrates, thermoreversible gelation by phase-separated polymer crystals within the ionogel is essential because it allows the gel to form a conformal contact with the acceptor substrate, thereby lowering the overall Gibbs energy of the system upon transfer of the ionogel. This crystallization-mediated stamping provides a much more efficient deposition route for producing thin films of ionically conductive high-capacitance solid ionogel electrolytes. The lateral dimensions of the transferred ionogels range from 1 mm × 1 mm to 40 mm × 40 mm. These ionogel patches are incorporated in organic p-type and inorganic n-type thin-film transistors and electrochemical light-emitting devices. The resulting transistors show sub-1 V device operation with high transconductance currents, and the optoelectronic devices emit orange light through a series of electrochemical redox reactions. These results demonstrate a simple yet versatile route to employ physical ionogels for various solid-state electrochemical device applications.

15.
ACS Appl Mater Interfaces ; 9(10): 8813-8818, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28155274

RESUMEN

A new type of physically cross-linked solid polymer electrolyte was demonstrated by using a poly(vinylidene fluoride) (PVDF) homopolymer in a room-temperature ionic liquid. The physical origins of gelation, specific capacitance, ionic conductivity, mechanical property, and capacitive charge modulation in organic thin-film electrochemical transistors were investigated systematically. Gelation occurs through bridging phase-separated homopolymer crystals by polymer chains in the composite electrolyte, thereby forming a rubbery network. The resulting homopolymer ion gels are able to accommodate both outstanding electrical (ionically conductive and capacitive) and mechanical (flexible and free-standing) characteristics of the component ionic liquid and the structuring polymer, respectively. These ion gels were successfully applied to organic thin-film transistors as high-capacitance gate dielectrics. Therefore, these results provide an effective route to generate a highly conductive rubbery polymer electrolyte that can be used in widespread electronic and electrochemical devices.

16.
Sci Rep ; 6: 29805, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27418389

RESUMEN

Nowadays, there has been an increasing demand to develop low-cost, disposable or reusable display devices to meet and maximize short-term user convenience. However, the disposable device has unfortunately not materialized yet due to the light-emitting materials and fabrication process issues. Here, we report sticker-type electrochemiluminescent (ECL) device using self-supporting, light-emitting gel electrolytes. The self-supporting ion gels were formulated by mixing a network-forming polymer, ionic liquid, and metal complex luminophore. The resulting ion gels exhibit excellent mechanical strength to form free-standing rubbery light-emitting electrolyte films, which enables the fabrication of sticker-type display by simple transfer and lamination processes on various substrates. The sticker-type ECL devices can be operated under an AC bias and exhibit a low operating voltage of 4 V (peak-to-peak voltage) with a maximum luminance of 90 cd/m(2). It is notable that the result is the first work to realize sticker displays based on electrochemical light emitting devices and can open up new possibilities for flexible or disposal display.

17.
ACS Appl Mater Interfaces ; 8(8): 5499-508, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26840992

RESUMEN

Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

18.
Nanoscale ; 7(17): 7540-4, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25850005

RESUMEN

Solution-gated graphene transistors were developed recently for use in pH sensor applications. The device operation is understood to rely on the capability of hydronium and hydroxide ions in solution to change the electrical properties of graphene. However, hydronium and hydroxide ions are accompanied by other ionic species in a typical acidic or basic solution and, therefore, the roles of these other ionic species must be also considered to fully understand the pH response of such devices. Using series of pH buffer solutions designed carefully, we verified that the magnitude and even the direction of pH-dependent Dirac voltage (VDirac) shift (the typical pH sensing indicator) depend strongly on the concentration and composition of the buffers used. The results indicate that the interpretation of the apparent pH-dependent VDirac response of a solution-gated graphene transistor must include the contributions of the additional ions in the solution.

19.
Nanoscale ; 6(7): 3526-31, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24584569

RESUMEN

Nanostructured dielectric composites can be obtained by dispersing high permittivity fillers, barium titanate (BTO) nanocubes, within a supramolecular framework. Thin films of BTO supramolecular nanocomposites exhibit a dielectric permittivity (εr) as high as 15 and a relatively low dielectric loss of ∼0.1 at 1 kHz. These results demonstrate a new route to control the dispersion of high permittivity fillers toward high permittivity dielectric nanocomposites with low loss. Furthermore, the present study shows that the size distribution of nanofillers plays a key role in their spatial distribution and local ordering and alignment within supramolecular nanostructures.

20.
ACS Appl Mater Interfaces ; 5(19): 9522-7, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24028461

RESUMEN

Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 µm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.


Asunto(s)
Electrónica , Geles/química , Iones/química , Dióxido de Silicio/química , Polietilenglicoles/química , Tereftalatos Polietilenos , Polímeros/química , Semiconductores , Temperatura , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...