Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744248

RESUMEN

Silicon-based anodes can increase the energy density of Li-ion batteries (LIBs) owing to their large weights and volumetric capacities. However, repeated charging and discharging can rapidly deteriorate the electrochemical properties because of a large volume change in the electrode. In this study, a commercial Fe-Si powder was coated with Al2O3 layers of different thicknesses via atomic layer deposition (ALD) to prevent the volume expansion of Si and suppress the formation of crack-induced solid electrolyte interfaces. The Al2O3 content was controlled by adjusting the trimethyl aluminum exposure time, and higher Al2O3 contents significantly improved the electrochemical properties. In 300 cycles, the capacity retention rate of a pouch full-cell containing the fabricated anodes increased from 69.8% to 72.3% and 79.1% depending on the Al2O3 content. The powder characterization and coin and pouch cell cycle evaluation results confirmed the formation of an Al2O3 layer on the powder surface. Furthermore, the expansion rate observed during the charging/discharging of the pouch cell indicated that the deposited layer suppressed the powder expansion and improved the cell stability. Thus, the performance of an LIB containing Si-alloy anodes can be improved by coating an ALD-synthesized protective Al2O3 layer.

2.
Materials (Basel) ; 15(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269103

RESUMEN

Silicon (Si)-based anode materials can increase the energy density of lithium (Li)-ion batteries owing to the high weight and volume capacity of Si. However, their electrochemical properties rapidly deteriorate due to large volume changes in the electrode resulting from repeated charging and discharging. In this study, we manufactured structurally stable Fe-Si alloy powders by performing high-energy milling for up to 24 h through the reduction of the Si phase size and the formation of the α-FeSi2 phase. The cause behind the deterioration of the electrochemical properties of the Fe-Si alloy powder produced by over-milling (milling for an increased time) was investigated. The 12 h milled Fe-Si alloy powder showed the best electrochemical properties. Through the microstructural analysis of the Fe-Si alloy powders after the evaluation of half/full coin cells, powder resistance tests, and charge/discharge cycles, it was found that this was due to the low electrical conductivity and durability of ß-FeSi2. The findings provide insight into the possible improvements in battery performance through the commercialization of Fe-Si alloy powders produced by over-milling in a mechanical alloying process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA