Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
Cell Death Discov ; 10(1): 257, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802344

RESUMEN

Despite the success in treating newly diagnosed pediatric acute lymphoblastic leukemia (aLL), the long-term cure rate for the 20% of children who relapse is poor, making relapsed aLL the primary cause of cancer death in children. By unbiased genome-wide retroviral RNAi screening and knockdown studies, we previously discovered opioid receptor mu 1 (OPRM1) as a new aLL cell resistance biomarker for the aLL chemotherapeutic drug, L-asparaginase, i.e., OPRM1 loss triggers L-asparaginase resistance. Indeed, aLL cell OPRM1 level is inversely proportional to L-asparaginase IC50: the lower the OPRM1 level, the higher the L-asparaginase IC50, indicating that aLL cells expressing reduced OPRM1 levels show resistance to L-asparaginase. In the current study, we utilized OPRM1-expressing and -knockdown aLL cells as well as relapsed patient aLL cells to identify candidate targeted therapy for L-asparaginase-resistant aLL. In OPRM1-expressing cells, L-asparaginase induces apoptosis via a cascade of events that include OPRM1-mediated decline in [cAMP]i, downregulation of PKA-mediated BAD S118 phosphorylation that can be reversed by 8-CPT-cAMP, cyt C release from the mitochondria, and subsequent caspase activation and PARP1 cleavage. The critical role of PKA inhibition due to a decrease in [cAMP]i in this apoptotic process is evident in the killing of OPRM1-knockdown and low OPRM1-expressing relapsed patient aLL cells by the PKA inhibitors, H89 and 14-22 amide. These findings demonstrate for the first time that PKA can be targeted to kill aLL cells resistant to L-asparaginase due to OPRM1 loss, and that H89 and 14-22 amide may be utilized to destroy L-asparaginase-resistant patient aLL cells.

2.
Front Cell Dev Biol ; 12: 1388745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721527

RESUMEN

Acute lymphoblastic leukemia (ALL) is a hematologic cancer that mostly affects children. It accounts for over a quarter of ALL pediatric cancers, causing most of the cancer death among children. Previously, we demonstrated that D,L-methadone causes ALL cell apoptosis via µ-opioid receptor 1 (OPRM1)-triggered ER Ca2+ release and decrease in Ca2+ efflux, elevating [Ca2+]i. However, the precise mechanism by which D,L-methadone induces ER Ca2+ release remains to be defined. Here, we show that in ALL cells, D,L-methadone-induced ER Ca2+ release is blocked by inhibition of Gαi, but not Gßϒ, indicating that the process is dependent on Gαi. Activation of adenylyl cyclase (AC) with forskolin or treatment with 8-CPT-cAMP blocks D,L-methadone-induced ER Ca2+ release, indicating that the latter results from Gαi-dependent downregulation of AC and cAMP. The 14-22 amide (myr) PKA inhibitor alone elicits ER Ca2+ release, and subsequent treatment with D,L-methadone does not cause additional ER Ca2+ release, indicating that PKA inhibition is a key step in D,L-methadone-induced ER Ca2+ release and can bypass the D,L-methadone-OPRM1-AC-cAMP step. This is consistent with the decrease in PKA-dependent (i) inhibitory PLCß3 Ser1105 phosphorylation that leads to PLCß3 activation and ER Ca2+ release, and (ii) BAD Ser118 phosphorylation, which together ultimately result in caspase activation and apoptosis. Thus, our findings indicate that D,L-methadone-induced ER Ca2+ release and subsequent apoptosis in ALL cells is mediated by Gαi-dependent downregulation of the AC-cAMP-PKA-PLCß3/BAD pathway. The fact that 14-22 amide (myr) alone effectively kills ALL cells suggests that PKA may be targeted for ALL therapy.

3.
Biochem Biophys Res Commun ; 710: 149898, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38598903

RESUMEN

Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown. Herein, we determined the crystal structure of the N-terminal domain of the type II antitoxin MazE-mt10 from Mycobacterium tuberculosis, revealing a homodimer of the ribbon-helix-helix (RHH) fold with distinct DNA binding specificity. NMR studies demonstrated that full-length MazE-mt10 forms the helical and coiled states in equilibrium within the C-terminal region, and that helical propensity is allosterically enhanced by the N-terminal binding to the cognate operator DNA. This coil-to-helix transition may promote toxin binding/neutralization of MazE-mt10 and further stabilize the TA-DNA transcription repressor. This is supported by many crystal structures of type II TA complexes in which antitoxins form an α-helical structure at the TA interface. The hidden helical state of free MazE-mt10 in solution, favored by DNA binding, adds a new dimension to the regulatory mechanism of type II TA systems. Furthermore, complementary approaches using X-ray crystallography and NMR allow us to study the allosteric interdomain interplay of many other full-length antitoxins of type II TA systems.


Asunto(s)
Antitoxinas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Antitoxinas/química , Modelos Moleculares , Factores de Transcripción/metabolismo , ADN/metabolismo , Proteínas Bacterianas/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473778

RESUMEN

Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Dimerización , Transducción de Señal/genética , Membrana Dobles de Lípidos , Isoformas de Proteínas/metabolismo , Proteínas ras/metabolismo , Proteínas de la Membrana/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38548930

RESUMEN

BACKGROUND: Time-activity pattern (TAP) is an important parameter for determining personal exposure to environmental pollutants. Changes in TAPs could have significant implications for the alterations in outcomes of exposure assessments. OBJECTIVE: This study aimed to evaluate the Seoul population's long-term change in TAPs, along with variations by sociodemographic group. METHODS: In 2004, 2009, 2014, and 2019, the Time Use Survey of Statistics Korea collected the TAP information of 4036, 2610, 3337, and 2793 Seoul residents, respectively. In 2022, the TAP information of 4401 Seoul residents was collected for Korean Air Pollutant Exposure (KAPEX) research. The microenvironmental TAP changes in the Seoul population from 2004 to 2022 were assessed based on age, gender, work status, and day type. RESULTS: From 2004 to 2022, Seoul people increasingly spent more time in indoor residences (from 14.8 ± 5.1 h to 15.8 ± 4.5 h) and less time in other indoors (from 7.2 ± 4.5 h to 5.9 ± 4.2 h). Their transit time constantly decreased from 2004 (1.4 ± 1.8 h) to 2022 (1.2 ± 1.3 h), whereas the outdoor time fluctuated throughout the years. From 2004 to 2022, the time of the day spent by Seoul people in residential indoor shifted to later in the morning (2004: 8:30 am; 2022: 9:00 am) and earlier in the evening (2004: 9:30 pm; 2022: 7:00 pm); however, the opposite was true for other indoors (2004: from 8:30 am to 9:30 pm; 2022: from 9:00 am to 7:00 pm) and transits (2004: 7:30-9:30 am and 3:00-8:00 pm; 2022: 7:30-9:00 pm and 5:00-9:00). The time of the day spent in outdoors increased from 2004 to 2019, with a distinct peak observed in 2022 (12:00 pm-2:00 pm). The microenvironmental time trends of adolescents and late-adulthoods differed from those of the other age groups, while those of males differed from females. Also, the microenvironmental time trends of the employed differed from those of the unemployed, and those during weekdays differed from those during weekends. IMPACT STATEMENT: Microenvironmental TAP should be essentially considered to estimate the actual exposure to pollutants. This study demonstrates the Seoul population's long-term changes in TAP throughout the 18 years as the significant parameter in exposure assessment. Notably, the microenvironmental TAPs of Seoul people shifted, with variations across different sociodemographic groups. Previous studies in Korea did not consider the TAP shifts in exposure assessment; this study highlights the importance of aligning TAP data with concurrent environmental pollutant data and emphasizes the need for refined data collection in future exposure assessments.

6.
Angew Chem Int Ed Engl ; 63(13): e202316942, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305637

RESUMEN

Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/ß' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/ß interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/química , Quinasas raf/metabolismo , Dimerización
7.
Artículo en Inglés | MEDLINE | ID: mdl-38424360

RESUMEN

BACKGROUND: Children may be exposed to harmful chemicals from their products. Accurate exposure factors are critical for exposure assessment of children's products. Product usage pattern parameters are relatively limited compared with the chemical concentration, children's physiological and behavioral parameters. OBJECTIVE: The aim of this study was to determine nationally representative Korean exposure factors for the usage patterns of children's products by sex, age, and season. METHODS: Using proportional quota sampling, a survey of 10,000 households with children aged 0-12 years was conducted twice, once in summer and winter. The children's ages were divided into four groups: infant (0-2 years old), toddler (3-6), lower-grade elementary student (7-9), and higher-grade elementary student (10-12). Data on exposure factors such as use rate, use frequency, and use duration of 57 children's products were collected. RESULTS: The 57 products were classified into five categories: baby products (13), toys (12), daily products (10), sporting goods (8), and stationery (14). The use rates of products in the daily products and stationery category were >90% in both seasons. Two of the 57 products showed significant sex differences in all three exposure factors (p < 0.001). Twenty-five of the 44 non-baby products showed significant age differences for all three exposure factors. Twenty-three of the 57 products varied significantly with season for all three exposure factors. IMPACT: This study generated a nationally representative exposure factor database for the usage patterns of children's products in Korea. The exposure factors for 57 children's products were investigated through twice survey with quota sampling with each 10,000 children nationwide. Sex, age, and seasonal differences for children's products were identified. These accurate exposure factors by sex, age, and season can be used as input parameters for refined exposure assessment.

10.
Nicotine Tob Res ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38048330

RESUMEN

INTRODUCTION: Many countries have enacted indoor smoke-free policies, and some have established outdoor non-smoking areas. However, no clear standard for determining the optimal distance for these outdoor non-smoking zones remains. This study aimed to evaluate outdoor tobacco smoke (OTS) exposure up to a distance of 21 m and to identify factors influencing OTS levels. METHODS: To assess OTS levels, PM2.5 concentrations were measured at distances of 6, 12, 15, 18, and 21 m using real-time aerosol monitors. Between August and October 2022, a total of 164 measurements were undertaken. The background PM2.5 concentration was gauged for 5 minutes before smoking commenced and then re-measured 3 minutes during smoking. OTS levels were determined by calculating the difference between the average background PM2.5 and the average PM2.5 concentrations during smoking. A one-sample t-test was employed to ascertain if the OTS levels at each distance were significantly elevated compared to 0 µg/m3. Furthermore, a multiple linear regression analysis was conducted to determine the factors influencing OTS levels. RESULTS: The mean OTS levels recorded at all specified distances significantly surpassed 0 µg/m3. The regression analysis revealed that the OTS levels correlated significantly with distance and wind speed. Specifically, OTS levels diminished as distance expanded and wind speed reduced. CONCLUSIONS: OTS levels, even at 21 m, were significantly greater than 0 µg/m3. Our results provide robust evidence supporting the establishment of outdoor non-smoking zone up to 21 m. IMPLICATIONS: Outdoor tobacco smoke (OTS) level was determined by PM2.5 concentration. The OTS levels significantly exceeded 0 µg/m3 at every measured distance up to 21 m. In the regression model, OTS levels notably correlated with distance and wind speed. OTS levels diminished as distance expanded and wind speed reduced.

11.
Ecotoxicol Environ Saf ; 268: 115695, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976932

RESUMEN

Widespread use of spray-type consumer products can raise significant concerns regarding their effects on indoor air quality and human health. In this study, we conducted non-target screening using gas chromatography-mass spectrometry (GC-MS) to analyze VOCs in 48 different spray-type consumer products. Using this approach, we tentatively identified a total of 254 VOCs from the spray-type products. Notably, more VOCs were detected in propellant-type products which are mostly solvent-based than in trigger-type ones which are mostly water-based. The VOCs identified encompass various chemical classes including alkanes, cycloalkanes, monoterpenoids, carboxylic acid derivatives, and carbonyl compounds, some of which arouse concerns due to their potential health effects. Alkanes and cycloalkanes are frequently detected in propellant-type products, whereas perfumed monoterpenoids are ubiquitous across all product categories. Among the identified VOCs, 12 compounds were classified into high-risk groups according to detection frequency and signal-to-noise (S/N) ratio, and their concentrations were confirmed using reference standards. Among the identified VOCs, D-limonene was the most frequently detected compound (freq. 21/48), with the highest concentration of 1.80 mg/g. The risk assessment was performed to evaluate the potential health risks associated with exposure to these VOCs. The non-carcinogenic and carcinogenic risks associated with the assessed VOC compounds were relatively low. However, it is important not to overlook the risk faced by occupational exposure to these VOCs, and the risk from simultaneous exposure to various VOCs contained in the products. This study serves as a valuable resource for the identification of unknown compounds in the consumer products, facilitating the evaluation of potential health risks to consumers.


Asunto(s)
Contaminantes Atmosféricos , Cicloparafinas , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/toxicidad , Compuestos Orgánicos Volátiles/análisis , Cicloparafinas/análisis , Alcanos/análisis , Monoterpenos/análisis , Monitoreo del Ambiente/métodos
12.
Front Aging Neurosci ; 15: 1224264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818480

RESUMEN

Postoperative delirium (POD) is associated with adverse outcomes in elderly patients after surgery. Electroencephalography (EEG) can be used to develop a potential biomarker for degenerative cerebral dysfunctions, including mild cognitive impairment and dementia. This study aimed to explore the relationship between preoperative EEG and POD. We included 257 patients aged >70 years who underwent spinal surgery. We measured the median dominant frequency (MDF), which is a resting-state EEG biomarker involving intrinsic alpha oscillations that reflect an idle cortical state, from the prefrontal regions. Additionally, the mini-mental state examination and Montreal cognitive assessment (MoCA) were performed before surgery as well as 5 days after surgery. For long-term cognitive function follow up, the telephone interview for cognitive status™ (TICS) was performed 1 month and 1 year after surgery. Fifty-two (20.2%) patients were diagnosed with POD. A multivariable logistic regression analysis that included age, MoCA score, Charlson comorbidity index score, Mini Nutritional Assessment, and the MDF as variables revealed that the MDF had a significant odds ratio of 0.48 (95% confidence interval 0.27-0.85). Among the patients with POD, the postoperative neurocognitive disorders could last up to 1 year. Low MDF on preoperative EEG was associated with POD in elderly patients undergoing surgery. EEG could be a novel potential tool for identifying patients at a high risk of POD.

13.
Sci Rep ; 13(1): 15143, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704695

RESUMEN

Many studies have evaluated the hazardous substances contained in various household chemical products. However, for aerosol spray products there is currently no international standard sampling method for use in a component analysis. The aim of this study was to develop an appropriate sampling method for the analysis of volatile organic compounds (VOCs) in consumer aerosol sprays. Two different sampling methods, spraying (into a vial) and perforating (and transferring the contents into a vial), were used to evaluate the levels of 16 VOC components in eight different aerosol spray products. All eight products contained trace amounts of hazardous VOCs, and a quantitative analysis showed that, for the same product, VOC concentrations were higher when spraying than when perforating. Using the spraying method, average toluene, ethylbenzene, p-xylene, o-xylene, and styrene concentrations were 1.80-, 2.10- 2.25-, 2.03-fold, and 1.28-fold higher, respectively, than when using the perforating method. The spraying method may provide more realistic estimates of the user's exposure to harmful substances and the associated health risks when using spray products. Of the two representative methods widely used to analyze harmful substances in consumer aerosol sprays, the spraying method is recommended over the perforating method for the analysis of VOCs.

14.
J Intensive Care ; 11(1): 35, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537685

RESUMEN

BACKGROUND: Despite the understanding of sepsis-induced extracellular vesicles (EVs), such as exosomes, and their role in intercellular communication during sepsis, little is known about EV contents such as microRNA (miRNA), which modulate important cellular processes contributing to sepsis in body fluids. This study aimed to analyze the differential expression of exosomal miRNAs in plasma samples collected from sepsis patients and healthy controls, and to identify potential miRNA regulatory pathways contributing to sepsis pathogenesis. METHODS: Quantitative real-time PCR-based microarrays were used to profile plasma exosomal miRNA expression levels in 135 patients with sepsis and 11 healthy controls from an ongoing prospective registry of critically ill adult patients admitted to the intensive care unit. The identified exosomal miRNAs were tested in an external validation cohort (35 sepsis patients and 10 healthy controls). And then, functional enrichment analyses of gene ontology, KEGG pathway analysis, and protein-protein interaction network and cluster analyses were performed based on the potential target genes of the grouped miRNAs. Finally, to evaluate the performance of the identified exosomal miRNAs in predicting in-hospital and 90-day mortalities of sepsis patients, receiver operating characteristic curve (ROC) and Kaplan-Meier analyses were performed. RESULTS: Compared with healthy controls, plasma exosomes from sepsis patients showed significant changes in 25 miRNAs; eight miRNAs were upregulated and 17 downregulated. Additionally, the levels of hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p were significantly lower in sepsis patients than in healthy controls (p < 0.0001). These four miRNAs were confirmed in an external validation cohort. In addition, the most common pathway for these four miRNAs were PI3K-Akt and mitogen-activated protein kinase (MAPK) signaling pathways based on the KEGG analysis. The area under the ROC of hsa-let-7f-5p, miR-331-3p, miR-301a-3p, and miR-335-5p level for in-hospital mortality was 0.913, 0.931, 0.929, and 0.957, respectively (p < 0.001), as confirmed in an external validation cohort. Also, the Kaplan-Meier analysis showed a significant difference in 90-day mortality between sepsis patients with high and low miR-335-5p, miR-301a-3p, hsa-let-7f-5p, and miR-331-3p levels (p < 0.001, log-rank test). CONCLUSION: Among the differentially-expressed miRNAs detected in microarrays, the top four downregulated exosomal miRNAs (hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p) were identified as independent prognostic factors for in-hospital and 90-day mortalities among sepsis patients. Bioinformatics analysis demonstrated that these four microRNAs might provide a significant contribution to sepsis pathogenesis through PI3K-Akt and MAPK signaling pathway.

15.
Protein Expr Purif ; 212: 106361, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652393

RESUMEN

DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility. To overcome this solubility issue, we engineered a DiRAS3 variant (C75S/C80S), which significantly improved soluble protein expression in E. coli. Recombinant DiRAS3 was purified by Ni-NTA and size exclusion chromatography (SEC). Concentration dependence of the SEC chromatogram indicated that DiRAS3 exists in monomer-dimer equilibrium. We then produced truncations of the N-terminal (ΔN) and both (ΔNC) extensions to the GTPase domain. Unlike full-length DiRAS3, the SEC profiles showed that ΔNC is monomeric while ΔN was monomeric with aggregation, suggesting that the N and/or C-terminal tail(s) contribute to dimerization and aggregation. The 1H-15N HSQC NMR spectrum of ΔNC construct displayed well-dispersed peaks similar to spectra of other GTPase domains, which enabled us to demonstrate that DiRAS3 has a GTPase domain that can bind GDP and GTP. Taken together, we conclude that, despite the substitutions in the G-box motifs, DiRAS3 can switch between nucleotide-bound states and that the N- and C-terminal extensions interact transiently with the GTPase domain in intra- and inter-molecular fashions, mediating weak multimerization of this unique small GTPase.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas ras , Escherichia coli/genética , Aminoácidos , Biofisica
16.
Cell Death Dis ; 14(7): 422, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443143

RESUMEN

ß-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-κB and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-κB activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Neoplasias Pulmonares/patología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 3/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores Toll-Like/metabolismo , Pulmón/metabolismo , Autofagia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
17.
Cell Biosci ; 13(1): 102, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287005

RESUMEN

BACKGROUND: Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS: We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS: The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION: Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.

19.
Discov Nano ; 18(1): 80, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37382714

RESUMEN

Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS2 field-effect transistors (FETs) by lowering the work function (Фm = Evacuum - EF,metal) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (-NH2), as a surface modifier of the Au (ФAu = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS2 FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.

20.
Heliyon ; 9(5): e15880, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215872

RESUMEN

The ZnO nanostructure layers have been widely investigated as electrodes for sensors due to their intrinsic advantages such as high active area and low cost. In this work, to enhance the detection properties of ZnO nanostructural electrodes, self-organized ZnO nanorod arrays were synthesized using the chemical bath deposition (CBD) method on FTO glasses and ZnO nanoparticles. The fabricated ZnO electrodes on the two different substrates were characterized by SEM, TEM, XRD, and XPS. Subsequently, the detection performance of ZnO nanorod electrodes was electrochemically measured in a 2,4,6-trinitrotoluene (2,4,6-TNT) solution by CV and EIS. The differences in current densities between the ZnO electrodes were determined by the width of the ZnO nanorods, resulting in a ∼45% higher detection efficiency with F-CBD (the ZnO nanorods on FTO) electrodes compared to S-CBD (the ZnO nanorods on ZnO nanoparticles) electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...