Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(2): 102195, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38741614

RESUMEN

G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.

2.
ACS Infect Dis ; 10(2): 453-466, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38241613

RESUMEN

Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among immunocompromised individuals, involving major organs such as lung, skin, spleen, kidney, liver, and bloodstream. Therefore, novel approaches are direly needed. Recently, we developed an amphiphilic dendrimer DDC18-8A exhibiting high antibacterial and antibiofilm efficacy in vitro. DDC18-8A is composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing amine terminals, exerting its antibacterial activity by attaching and inserting itself into bacterial membranes to trigger cell lysis. Here, we examined the pharmacokinetics and in vivo toxicity as well as the antibacterial efficacy of DDC18-8A in mouse models of human infectious diseases. Remarkably, DDC18-8A significantly reduced the bacterial burden in mouse models of acute pneumonia and bacteremia by P. aeruginosa, methicillin-resistant S. aureus (MRSA), and carbapenem-resistant K. pneumoniae and neutropenic soft tissue infection by P. aeruginosa and MRSA. Most importantly, DDC18-8A outperformed pathogen-specific antibiotics against all three pathogens by achieving a similar bacterial clearance at 10-fold lower therapeutic concentrations. In addition, it showed superior stability and biodistribution in vivo, with excellent safety profiles yet without any observable abnormalities in histopathological analysis of major organs, blood serum biochemistry, and hematology. Collectively, we provide strong evidence that DDC18-8A is a promising alternative to the currently prescribed antibiotics in addressing challenges associated with nosocomial infections by MDR pathogens.


Asunto(s)
Enfermedades Transmisibles , Infección Hospitalaria , Dendrímeros , Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Humanos , Dendrímeros/farmacología , Distribución Tisular , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Enfermedades Transmisibles/tratamiento farmacológico , Klebsiella pneumoniae , Infección Hospitalaria/tratamiento farmacológico
3.
Int J Antimicrob Agents ; 62(3): 106888, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37328075

RESUMEN

The rapid emergence and spread of multi-drug- or pan-drug-resistant bacterial pathogens, such as ESKAPE, pose a serious threat to global health. However, the development of novel antibiotics is hindered by difficulties in identifying new antibiotic targets and the rapid development of drug resistance. Drug repurposing is an effective alternative strategy for combating antibiotic resistance that both saves resources and extends the life of existing antibiotics in combination treatment regimens. Screening of a chemical compound library identified BMS-833923 (BMS), a smoothened antagonist that kills Gram-positive bacteria directly, and potentiates colistin to destroy various Gram-negative bacteria. BMS did not induce detectable antibiotic resistance in vitro, and showed effective activity against drug-resistant bacteria in vivo. Mechanistic studies revealed that BMS caused membrane disruption by targeting the membrane phospholipids phosphatidylglycerol and cardiolipin, promoting membrane dysfunction, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. This study describes a potential strategy to enhance the efficacy of colistin and combat multi-drug-resistant ESKAPE pathogens.


Asunto(s)
Colistina , Proteínas Hedgehog , Colistina/farmacología , Colistina/metabolismo , Proteínas Hedgehog/farmacología , Fosfatidilgliceroles/farmacología , Reposicionamiento de Medicamentos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias Gramnegativas , Adyuvantes Inmunológicos , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
4.
Cell Death Discov ; 9(1): 83, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882396

RESUMEN

Reprogramming of lipid metabolism, which modulates energy utilization and cell signaling, maintains cell survival and promotes cancer metastasis in cancer cells. Ferroptosis is a type of cell necrosis caused by an overload of lipid oxidation, which has been demonstrated to be involved in cancer cell metastasis. However, the mechanism by which fatty acid metabolism regulates the anti-ferroptosis signaling pathways is not fully understood. The formation of ovarian cancer spheroids helps to counteract the hostile microenvironment of the peritoneal cavity with low oxygen, shortage of nutrients, and subjected to platinum therapy. Previously, we demonstrated that Acyl-CoA synthetase long-chain family member 1 (ACSL1) promotes cell survival and peritoneal metastases in ovarian cancer, but the mechanism is still not well elucidated. In this study, we demonstrate that the formation of spheroids and under exposure to platinum chemotherapy increased the levels of anti-ferroptosis proteins as well as ACSL1. Inhibition of ferroptosis can enhance spheroid formation and vice versa. Genetic manipulation of ACSL1 expression showed that ACSL1 reduced the level of lipid oxidation and increased the resistance to cell ferroptosis. Mechanistically, ACSL1 increased the N-myristoylation of ferroptosis suppressor 1 (FSP1), resulting in the inhibition of its degradation and translocation to the cell membrane. The increase in myristoylated FSP1 functionally counteracted oxidative stress-induced cell ferroptosis. Clinical data also suggested that ACSL1 protein was positively correlated with FSP1 and negatively correlated with the ferroptosis markers 4-HNE and PTGS2. In conclusion, this study demonstrated that ACSL1 enhances antioxidant capacity and increases ferroptosis resistance by modulating the myristoylation of FSP1.

5.
Adv Healthc Mater ; 12(6): e2202663, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653312

RESUMEN

Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxides, has emerged as an attractive strategy to reverse drug resistance. Of particular interest is the ferroptosis-apoptosis combination therapy for cancer treatment. Herein, a nanoplatform is reported for effective co-delivery of the anticancer drug sorafenib (S) and the ferroptosis inducer hemin (H), toward synergistic ferroptosis-apoptosis therapy of advanced hepatocellular carcinoma (HCC) as a proof-of-concept study. Liposome is an excellent delivery system; however, it is not sufficiently responsive to the acidic tumor microenvironment (TME) for tumor-targeted drug delivery. The pH-sensitive vesicles are therefore developed (SH-AD-L) by incorporating amphiphilic dendrimers (AD) into liposomes for controlled and pH-stimulated release of sorafenib and hemin in the acidic TME, thanks to the protonation of numerous amine functionalities in AD. Importantly, SH-AD-L not only blocked glutathione synthesis to disrupt the antioxidant system, but also increased intracellular Fe2+ and ·OH concentrations to amplify oxidative stress, both of which contribute to enhanced ferroptosis. Remarkably, high levels of ·OH also augmented sorafenib-mediated apoptosis in tumor cells. This study demonstrates the efficacy of ferroptosis-apoptosis combination therapy, as well as the promise of the AD-doped TME-responsive vesicles for drug delivery in combination therapy to treat advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Dendrímeros , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Dendrímeros/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Hemina/farmacología , Hemina/uso terapéutico , Apoptosis , Liposomas/farmacología , Polímeros/farmacología , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
6.
Redox Biol ; 59: 102578, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566738

RESUMEN

Conventional techniques for in vitro cancer drug screening require labor-intensive formalin fixation, paraffin embedding, and dye staining of tumor tissues at fixed endpoints. This way of assessment discards the valuable pharmacodynamic information in live cells over time. Here, we found endogenous lipofuscin-like autofluorescence acutely accumulated in the cell death process. Its unique red autofluorescence could report the apoptosis without labeling and continuously monitor the treatment responses in 3D tumor-culture models. Lifetime imaging of lipofuscin-like red autofluorescence could further distinguish necrosis from apoptosis of cells. Moreover, this endogenous fluorescent marker could visualize the apoptosis in live zebrafish embryos during development. Overall, this study validates that lipofuscin-like autofluorophore is a generic cell death marker. Its characteristic autofluorescence could label-free predict the efficacy of anti-cancer drugs in organoids or animal models.


Asunto(s)
Lipofuscina , Neoplasias , Animales , Lipofuscina/metabolismo , Pez Cebra/metabolismo , Microscopía Fluorescente , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Coloración y Etiquetado
7.
Hepatology ; 77(1): 213-229, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363898

RESUMEN

BACKGROUND AND AIMS: Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS: Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS: Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Proteínas Quinasas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Hiperglucemia/patología , Lípidos , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares
8.
Adv Sci (Weinh) ; 9(26): e2200562, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35712764

RESUMEN

G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report  for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.


Asunto(s)
Angiotensina II , Neoplasias , Angiotensina II/metabolismo , Animales , Ratones , Neoplasias/genética , Neoplasias/terapia , ARN/metabolismo , Receptores Acoplados a Proteínas G/genética , Sistema Renina-Angiotensina
9.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011543

RESUMEN

Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3', 5'-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neoplasias/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Neoplasias/etiología , Neoplasias/patología , Especificidad de Órganos/genética , Unión Proteica , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo
10.
J Mol Biol ; 433(7): 166843, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539880

RESUMEN

Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.


Asunto(s)
Hipotálamo/metabolismo , Complejos Multiproteicos/genética , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1/genética , Animales , Hormonas/biosíntesis , Hormonas/genética , Humanos , Complejos Multiproteicos/ultraestructura , Unión Proteica/genética , Receptores de Superficie Celular/genética , Receptores de Estrógenos/ultraestructura , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Kisspeptina-1/ultraestructura , Transducción de Señal/genética
11.
Oncogene ; 40(1): 97-111, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082557

RESUMEN

As a result of the hostile microenvironment, metabolic alterations are required to enable the malignant growth of cancer cells. To understand metabolic reprogramming during metastasis, we conducted shotgun proteomic analysis of highly metastatic (HM) and non-metastatic (NM) ovarian cancer cells. The results suggest that the genes involved in fatty-acid (FA) metabolism are upregulated, with consequent increases of phospholipids with relatively short FA chains (myristic acid, MA) in HM cells. Among the upregulated proteins, ACSL1 expression could convert the lipid profile of NM cells to that similar of HM cells and make them highly aggressive. Importantly, we demonstrated that ACSL1 activates the AMP-activated protein kinase and Src pathways via protein myristoylation and finally enhances FA beta oxidation. Patient samples and tissue microarray data also suggested that omentum metastatic tumours have higher ACSL1 expression than primary tumours and a strong association with poor clinical outcome. Overall, our data reveal that ACSL1 enhances cancer metastasis by regulating FA metabolism and myristoylation.


Asunto(s)
Carcinoma Epitelial de Ovario/patología , Coenzima A Ligasas/metabolismo , Ácidos Grasos/metabolismo , Neoplasias Ováricas/patología , Proteómica/métodos , Regulación hacia Arriba , Animales , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lipidómica , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Ováricas/metabolismo , Pronóstico , Transducción de Señal , Microambiente Tumoral
12.
Placenta ; 104: 94-101, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310299

RESUMEN

INTRODUCTION: Hypertensive disorders of pregnancy(HDP) is a complex and challenging group of pregnancy complications that is one of the leading causes of maternal and fetal death worldwide. Recent studies have shown that the single nucleotide polymorphism(SNP) may play a role in the pathogenesis of HDP. This study aimed to investigate the association of MiR-146a rs2910164 and insulin receptor(INSR) rs2059806 SNPs with HDP and their associated complications in the Han population of Northeast China. METHODS: A total of 240 HDP patients and 380 healthy controls were selected for genotype determination. For the most special and high incidence of HDP, we also studied the SNPs in association with pre-eclampsia(PE) patients. In addition, HDP complicated with gestational diabetes mellitus(GDM) patients was further analyzed to identify the association between SNPs and HDP-related complications. Multivariate logical regression analysis combined with 10, 000 permutation test corrections was used to analyze the association of MiR-146a and INSR SNPs with HDP. RESULTS: After adjusting for relevant factors, MiR-146a rs2910164 or INSR rs2059806 SNPs were not significantly different between HDP or PE patients and healthy controls(P>0.05). Meanwhile, MiR146a rs2910164 and INSR rs2059806 SNPs were not significantly different between HDP complicated with GDM and control group. DISCUSSION: Our data indicates that MiR-146a rs2910164 and INSR rs2059806 SNPs may not be significantly related with HDP in the Han population of Northeast China living in Heilongjiang Province.


Asunto(s)
Antígenos CD/genética , Hipertensión Inducida en el Embarazo/genética , MicroARNs/genética , Receptor de Insulina/genética , Adulto , Estudios de Casos y Controles , China , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Embarazo
13.
FASEB J ; 34(6): 7561-7577, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281204

RESUMEN

Elucidation of host-pathogen interaction is essential for developing effective strategies to combat bacterial infection. Dual RNA-Seq using cultured cells or tissues/organs as the host of pathogen has emerged as a novel strategy to understand the responses concurrently from both pathogen and host at cellular level. However, bacterial infection mostly causes systematic responses from the host at organism level where the interplay is urgently to be understood but inevitably being neglected by the current practice. Here, we developed an approach that simultaneously monitor the genome-wide infection-linked transcriptional alterations in both pathogenic Vibrio parahaemolyticus and the infection host nematode Caenorhabditis elegans. Besides the dynamic alterations in transcriptomes of both C. elegans and V. parahaemolyticus during infection, we identify a two-component system, BarA/UvrY, that is important for virulence in host. BarA/UvrY not only controls the virulence factors in V. parahaemolyticus including Type III and Type VI secretion systems, but also attenuates innate immune responses in C. elegans, including repression on the MAP kinase-mediated cascades. Thus, our study exemplifies the use of dual RNA-Seq at organism level to uncover previously unrecognized interplay between host and pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Vibrio parahaemolyticus/genética , Factores de Virulencia/genética , Virulencia/genética , Animales , Caenorhabditis elegans/microbiología , Línea Celular Tumoral , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/genética , Proteínas de la Membrana/genética , RNA-Seq/métodos , Factores de Transcripción/genética , Pez Cebra
14.
Oncogene ; 39(20): 4061-4076, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32214200

RESUMEN

A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1-FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients' samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 9 de la Matriz/biosíntesis , Melanoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Proteínas Activadoras de GTPasa/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Melanoma/genética , Melanoma/patología , Proteínas Supresoras de Tumor/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-31708873

RESUMEN

The G protein-coupled estrogen receptor (GPER) is a seven-transmembrane-domain receptor that mediates non-genomic estrogen related signaling. After ligand activation, GPER triggers multiple downstream pathways that exert diverse biological effects on the regulation of cell growth, migration and programmed cell death in a variety of tissues. A significant correlation between GPER and the progression of multiple cancers has likewise been reported. Therefore, a better understanding of the role GPER plays in cancer biology may lead to the identification of novel therapeutic targets, especially among estrogen-related cancers. Here, we review cell signaling and detail the functions of GPER in malignancies.

16.
J Ovarian Res ; 12(1): 87, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31526390

RESUMEN

BACKGROUND: This study aimed to examine the performance of the four risk of malignancy index (RMI) in discriminating borderline ovarian tumors (BOTs) and benign ovarian masses in daily clinical practice. METHODS: A total of 162 women with BOTs and 379 women with benign ovarian tumors diagnosed at the Second Affiliated Hospital of Harbin Medical University from January 2012 to December 2016 were enrolled in this retrospective study. Also, we classified these patients into serous borderline ovarian tumor (SBOT) and mucinous borderline ovarian tumor (MBOT) subgroup. Preoperative ultrasound findings, cancer antigen 125 (CA125) and menopausal status were reviewed. The area under the curve (AUC) of receiver operator characteristic curves (ROC) and performance indices of RMI I, RMI II, RMI III and RMI IV were calculated and compared for discrimination between benign ovarian tumors and BOTs. RESULTS: RMI I had the highest AUC (0.825, 95% CI: 0.790-0.856) among the four RMIs in BOTs group. Similar results were found in SBOT (0.839, 95% CI: 0.804-0.871) and MBOT (0.791, 95% CI: 0.749-0.829) subgroups. RMI I had the highest specificity among the BOTs group (87.6, 95% CI: 83.9-90.7%), SBOT (87.6, 95% CI: 83.9-90.7%) and MBOT group (87.6, 95% CI: 83.9-90.7%). RMI II scored the highest overall in terms of sensitivity among the BOTs group (69.75, 95% CI: 62.1-76.7%), SBOT (74.34, 95% CI: 65.3-82.1%) and MBOT (59.18, 95% CI: 44.2-73.0%) group. CONCLUSION: Compared to other RMIs, RMI I was the best-performed method for differentiation of BOTs from benign ovarian tumors. At the same time, RMI I also performed best in the discrimination SBOT from benign ovarian tumors.


Asunto(s)
Cistoadenoma Mucinoso/diagnóstico , Cistadenoma Seroso/diagnóstico , Diagnóstico Diferencial , Neoplasias Ováricas/diagnóstico , Adulto , Algoritmos , Biomarcadores de Tumor/sangre , Antígeno Ca-125/sangre , Cistoadenoma Mucinoso/diagnóstico por imagen , Cistoadenoma Mucinoso/patología , Cistadenoma Seroso/diagnóstico por imagen , Cistadenoma Seroso/patología , Femenino , Humanos , Neoplasias/sangre , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Neoplasias Ováricas/sangre , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Periodo Preoperatorio , Medición de Riesgo , Factores de Riesgo
17.
Nat Commun ; 10(1): 2406, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160622

RESUMEN

Organ-specific colonization suggests that specific cell-cell recognition is essential. Yet, very little is known about this particular interaction. Moreover, tumor cell lodgement requires binding under shear stress, but not static, conditions. Here, we successfully isolate the metastatic populations of cancer stem/tumor-initiating cells (M-CSCs). We show that the M-CSCs tether more and roll slower than the non-metastatic (NM)-CSCs, thus resulting in the preferential binding to the peritoneal mesothelium under ascitic fluid shear stress. Mechanistically, this interaction is mediated by P-selectin expressed by the peritoneal mesothelium. Insulin-like growth factor receptor-1 carrying an uncommon non-sulfated sialyl-Lewisx (sLex) epitope serves as a distinct P-selectin binding determinant. Several glycosyltransferases, particularly α1,3-fucosyltransferase with rate-limiting activity for sLex synthesis, are highly expressed in M-CSCs. Tumor xenografts and clinical samples corroborate the relevance of these findings. These data advance our understanding on the molecular regulation of peritoneal metastasis and support the therapeutic potential of targeting the sLex-P-selectin cascade.


Asunto(s)
Líquido Ascítico , Carcinoma/secundario , Adhesión Celular , Hidrodinámica , Células Madre Neoplásicas/metabolismo , Oligosacáridos/metabolismo , Neoplasias Ováricas/patología , Selectina-P/metabolismo , Neoplasias Peritoneales/secundario , Animales , Carcinoma/metabolismo , Línea Celular Tumoral , Epitelio/metabolismo , Femenino , Fucosiltransferasas/metabolismo , Células HEK293 , Humanos , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Peritoneo/metabolismo , Receptor IGF Tipo 1/metabolismo , Antígeno Sialil Lewis X , Estrés Mecánico
18.
J Cell Mol Med ; 23(7): 4569-4581, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31037837

RESUMEN

Although invasive epithelial ovarian cancer (IOC) and low malignant potential ovarian tumour (LMP) are similar, they are associated with different outcomes and treatment strategies. The current accuracy in distinguishing these diseases is unsatisfactory, leading to delays or unnecessary treatments. We compared the molecular signature of IOC and LMP cases by analysing their transcriptomic data and re-clustered them according to these data rather than the pathological dissection. We identified that FAM83D was highly expressed in IOC. To verify the role of FAM83D in the progression and metastasis, we used the isogenic ovarian cancer metastatic models, highly metastatic cells (HM) and non-metastatic cells (NM). Overexpression of FAM83D significantly promoted cell proliferation, migration and spheroid formation. This was consistent with previous data showing that high FAM83D expression is associated with poor prognosis in cancer patients. Moreover, similar to the HM cells, the FAM83D-overexpressing NM cells demonstrated stronger phosphorylation of the epidermal growth factor receptor (EGFR) and c-Raf. This indicates that the action of FAM83D is mediated by the activation of the EGFR pathway. Taken together, this report suggested that FAM83D might be an excellent molecular marker to discriminate between IOC and LMP.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Progresión de la Enfermedad , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones SCID , Proteínas Asociadas a Microtúbulos/genética , Invasividad Neoplásica , Neoplasias Ováricas/genética , Curva ROC , Transducción de Señal , Análisis de Supervivencia , Transcriptoma/genética , Regulación hacia Arriba/genética
19.
J Exp Clin Cancer Res ; 38(1): 116, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30845964

RESUMEN

BACKGROUND: Angiotensin II (ANGII) and its receptor (AGTR1) have been proposed as significant contributors to metastasis in multiple cancers. Further, high AGTR1 levels are associated with poor epithelial ovarian cancer (EOC) outcomes. However, the mechanistic basis for these effects is unknown. Recent studies have suggested that ovarian cancer metastasis is highly dependent on the formation of multicellular spheroids (MCS). To understand the associations between the ANGII/AGTR1 pathway and cancer outcomes, we evaluated the effects of ANGII on MCS formation by ovarian cancer cells and used a proteomic approach to analyze the mechanistic basis. METHODS: We used the data from the GENT database and immunohistochemistry staining to assess the AGTR1 expression in epithelial ovarian cancer (EOC) patients and to assess its role in cancer progression. Colony formation assay, 3D culture assay, and transwell assays were used to analyze the effect of ANGII on the MCS formation and cell migration. The signaling pathways of AGTR1 and transactivation of epidermal growth factor receptor (EGFR) transactivation were investigated by the western blotting analysis. Xenograft models were used to determine the role of AGTR1 in ovarian cancer metastasis. ANGII release from ovarian cancer cells and ANGII levels in the EOC ascites fluid were measured by immunoassay. A shotgun proteomic approach was used to explore the detail molecular mechanism. Modulation of lipid desaturation and endoplasmic reticulum stress were verified by the in vitro and in vivo functional assays. RESULTS: AGTR1 expression was negatively correlated with EOC prognosis. AGTR1activation significantly enhanced the MCS formation and cell migration. ANGII triggered both of the classical AGTR1 pathway and the EGFR transactivation. ANGII administration increased peritoneal metastasis. In addition, ovarian cancer cells secreted ANGII and enhanced cancer metastasis in a positive feedback manner. Based on the proteomic data, lipid desaturation was activated by induction of stearoyl-CoA desaturase-1 (SCD1), which suggests that inhibition of SCD1 may significantly reduce MCS formation by increasing endoplasmic reticulum stress. CONCLUSIONS: ANGII promotes MCS formation and peritoneal metastasis of EOC cells. AGTR1 activation increases the lipid desaturation via SCD1 upregulation, which ultimately reduces endoplasmic reticulum stress in MCS. This mechanism explained the association between high levels of AGTR1 and poor clinical outcomes in EOC patients.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Neoplasias Peritoneales/genética , Receptor de Angiotensina Tipo 1/genética , Estearoil-CoA Desaturasa/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Animales , Carcinoma Epitelial de Ovario/patología , Movimiento Celular/genética , Estrés del Retículo Endoplásmico/genética , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metabolismo de los Lípidos/genética , Lípidos/genética , Ratones , Metástasis de la Neoplasia , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/secundario , Pronóstico , Proteómica , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...