Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pain ; 165(1): 54-74, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366593

RESUMEN

ABSTRACT: The persistence of inflammatory and neuropathic pain is poorly understood. We investigated a novel therapeutic paradigm by targeting gene networks that sustain or reverse persistent pain states. Our prior observations found that Sp1-like transcription factors drive the expression of TRPV1, a pain receptor, that is blocked in vitro by mithramycin A (MTM), an inhibitor of Sp1-like factors. Here, we investigate the ability of MTM to reverse in vivo models of inflammatory and chemotherapy-induced peripheral neuropathy (CIPN) pain and explore MTM's underlying mechanisms. Mithramycin reversed inflammatory heat hyperalgesia induced by complete Freund adjuvant and cisplatin-induced heat and mechanical hypersensitivity. In addition, MTM reversed both short-term and long-term (1 month) oxaliplatin-induced mechanical and cold hypersensitivity, without the rescue of intraepidermal nerve fiber loss. Mithramycin reversed oxaliplatin-induced cold hypersensitivity and oxaliplatin-induced TRPM8 overexpression in dorsal root ganglion (DRG). Evidence across multiple transcriptomic profiling approaches suggest that MTM reverses inflammatory and neuropathic pain through broad transcriptional and alternative splicing regulatory actions. Mithramycin-dependent changes in gene expression following oxaliplatin treatment were largely opposite to and rarely overlapped with changes in gene expression induced by oxaliplatin alone. Notably, RNAseq analysis revealed MTM rescue of oxaliplatin-induced dysregulation of mitochondrial electron transport chain genes that correlated with in vivo reversal of excess reactive oxygen species in DRG neurons. This finding suggests that the mechanism(s) driving persistent pain states such as CIPN are not fixed but are sustained by ongoing modifiable transcription-dependent processes.


Asunto(s)
Antineoplásicos , Neuralgia , Humanos , Plicamicina/efectos adversos , Oxaliplatino/toxicidad , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ganglios Espinales/metabolismo
2.
Reg Anesth Pain Med ; 48(10): 522-525, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37230754

RESUMEN

BACKGROUND: Paroxysmal sympathetic hyperactivity (PSH) is an autonomic disorder affecting patients with severe acquired brain injury characterized by intermittent sympathetic discharges with limited therapeutic options. We hypothesized that the PSH pathophysiology could be interrupted via stellate ganglion blockade (SGB). CASE PRESENTATION: A patient with PSH after midbrain hemorrhage followed by hydrocephalus obtained near-complete resolution of sympathetic events for 140 days after SGB. CONCLUSION: SGB is a promising therapy for PSH, overcoming the limitations of systemic medications and may serve to recalibrate aberrant autonomic states.


Asunto(s)
Bloqueo Nervioso Autónomo , Ganglio Estrellado , Humanos , Femenino , Persona de Mediana Edad
3.
J Trauma Acute Care Surg ; 92(2): 313-322, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738997

RESUMEN

BACKGROUND: The earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors. METHODS: Preresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography. RESULTS: Differential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls. CONCLUSION: Our findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/genética , Plaquetas/metabolismo , ARN/metabolismo , Transcriptoma , Heridas y Lesiones/complicaciones , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Proyectos Piloto , Activación Plaquetaria , Agregación Plaquetaria , Tromboelastografía
4.
BMJ Open Qual ; 10(3)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34281910

RESUMEN

OBJECTIVE: Multimodal analgesia pathways have been shown to reduce opioid use and side effects in surgical patients. A quality improvement initiative was implemented to increase the use of multimodal analgesia in adult patients presenting for general anaesthesia at an academic tertiary care centre. The aim of this study was to increase adoption of a perioperative multimodal analgesia protocol across a broad population of surgical patients. The use of multimodal analgesia was tracked as a process metric. Our primary outcome was opioid use normalised to oral morphine equivalents (OME) intraoperatively, in the postanaesthesia care unit (PACU), and 48 hours postoperatively. Pain scores and use of antiemetics were measured as balancing metrics. METHODS: We conducted a quality improvement study of a multimodal analgesia protocol implemented for adult (≥18 and≤70) non-transplant patients undergoing general anaesthesia (≥180 min). Components of multimodal analgesia were defined as (1) preoperative analgesic medication (acetaminophen, celecoxib, diclofenac, gabapentin), (2) regional anaesthesia (peripheral nerve block or catheter, epidural catheter or spinal) or (3) intraoperative analgesic medication (ketamine, ketorolac, lidocaine infusion, magnesium, acetaminophen, dexamethasone ≥8 mg, dexmedetomidine). We compared opioid use, pain scores and antiemetic use for patients 1 year before (baseline group-1 July 2018 to 30 June 2019) and 1 year after (implementation group-1 July 2019 to 30 June 2020) project implementation. RESULTS: Use of multimodal analgesia improved from 53.9% in the baseline group to 67.5% in the implementation group (p<0.001). There was no significant difference in intraoperative OME use before and after implementation (ß0=44.0, ß2=0.52, p=0.875). OME decreased after the project implementation in the PACU (ß0=34.4, ß2=-3.88, p<0.001) and 48 hours postoperatively (ß0=184.9, ß2=-22.59, p<0.001), while pain scores during those time points were similar. CONCLUSION: A perioperative pragmatic multimodal analgesic intervention was associated with reduced OME use in the PACU and 48 hours postoperatively.


Asunto(s)
Analgesia , Servicio de Anestesia en Hospital , Adulto , Analgésicos Opioides , Humanos , Dimensión del Dolor , Dolor Postoperatorio/tratamiento farmacológico
5.
Mol Pain ; 16: 1744806920936502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32586194

RESUMEN

BACKGROUND: Paclitaxel is an important chemotherapeutic agent for the treatment of breast cancer. Paclitaxel-induced peripheral neuropathy (PIPN) is a major dose-limiting toxicity that can persist into survivorship. While not all survivors develop PIPN, for those who do, it has a substantial negative impact on their functional status and quality of life. No interventions are available to treat PIPN. In our previous studies, we identified that the HIF-1 signaling pathway (H1SP) was perturbed between breast cancer survivors with and without PIPN. Preclinical studies suggest that the H1SP is involved in the development of bortezomib-induced and diabetic peripheral neuropathy, and sciatic nerve injury. The purpose of this study was to identify H1SP genes that have both differential methylation and differential gene expression between breast cancer survivors with and without PIPN. METHODS: A multi-staged integrated analysis was performed. In peripheral blood, methylation was assayed using microarray and gene expression was assayed using RNA-seq. Candidate genes in the H1SP having both differentially methylation and differential expression were identified between survivors who received paclitaxel and did (n = 25) and did not (n = 25) develop PIPN. Then, candidate genes were evaluated for differential methylation and differential expression in public data sets of preclinical models of PIPN and sciatic nerve injury. RESULTS: Eight candidate genes were identified as both differential methylation and differential expression in survivors. Of the eight homologs identified, one was found to be differential expression in both PIPN and "normal" mice dorsal root ganglia; three were differential methylation in sciatic nerve injury versus sham rats in both pre-frontal cortex and T-cells; and two were differential methylation in sciatic nerve injury versus sham rats in the pre-frontal cortex. CONCLUSIONS: This study is the first to evaluate for methylation in cancer survivors with chronic PIPN. The findings provide evidence that the expression of H1SP genes associated with chronic PIPN in cancer survivors may be regulated by epigenetic mechanisms and suggests genes for validation as potential therapeutic targets.


Asunto(s)
Neoplasias de la Mama/complicaciones , Supervivientes de Cáncer , Metilación de ADN/genética , Regulación de la Expresión Génica , Factor 1 Inducible por Hipoxia/genética , Paclitaxel/efectos adversos , Traumatismos de los Nervios Periféricos/inducido químicamente , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Neuralgia/etiología , Neuralgia/genética , Traumatismos de los Nervios Periféricos/genética , Corteza Prefrontal/patología , Regiones Promotoras Genéticas/genética , Mapas de Interacción de Proteínas/genética , Ratas , Linfocitos T/inmunología
6.
Br J Anaesth ; 123(2): e249-e253, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30929760

RESUMEN

The study of rare families with inherited pain insensitivity can identify new human-validated analgesic drug targets. Here, a 66-yr-old female presented with nil requirement for postoperative analgesia after a normally painful orthopaedic hand surgery (trapeziectomy). Further investigations revealed a lifelong history of painless injuries, such as frequent cuts and burns, which were observed to heal quickly. We report the causative mutations for this new pain insensitivity disorder: the co-inheritance of (i) a microdeletion in dorsal root ganglia and brain-expressed pseudogene, FAAH-OUT, which we cloned from the fatty-acid amide hydrolase (FAAH) chromosomal region; and (ii) a common functional single-nucleotide polymorphism in FAAH conferring reduced expression and activity. Circulating concentrations of anandamide and related fatty-acid amides (palmitoylethanolamide and oleoylethanolamine) that are all normally degraded by FAAH were significantly elevated in peripheral blood compared with normal control carriers of the hypomorphic single-nucleotide polymorphism. The genetic findings and elevated circulating fatty-acid amides are consistent with a phenotype resulting from enhanced endocannabinoid signalling and a loss of function of FAAH. Our results highlight previously unknown complexity at the FAAH genomic locus involving the expression of FAAH-OUT, a novel pseudogene and long non-coding RNA. These data suggest new routes to develop FAAH-based analgesia by targeting of FAAH-OUT, which could significantly improve the treatment of postoperative pain and potentially chronic pain and anxiety disorders.


Asunto(s)
Amidohidrolasas/genética , Ácidos Araquidónicos/sangre , Endocannabinoides/sangre , Insensibilidad Congénita al Dolor/sangre , Insensibilidad Congénita al Dolor/genética , Alcamidas Poliinsaturadas/sangre , Seudogenes/genética , Anciano , Amidohidrolasas/sangre , Femenino , Humanos , Polimorfismo de Nucleótido Simple/genética
7.
J Neurosci ; 30(32): 10860-71, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702715

RESUMEN

To examine the role of small RNAs in peripheral pain pathways, we deleted the enzyme Dicer in mouse postmitotic damage-sensing neurons. We used a Nav1.8-Cre mouse to target those nociceptors important for inflammatory pain. The conditional null mice were healthy with a normal number of sensory neurons and normal acute pain thresholds. Behavioral studies showed that inflammatory pain was attenuated or abolished. Inflammatory mediators failed to enhance excitability of Nav1.8+ sensory neurons from null mutant mice. Acute noxious input into the dorsal horn of the spinal cord was apparently normal, but the increased input associated with inflammatory pain measured using c-Fos staining was diminished. Microarray and quantitative real-time reverse-transcription PCR (qRT-PCR) analysis showed that Dicer deletion lead to the upregulation of many broadly expressed mRNA transcripts in dorsal root ganglia. By contrast, nociceptor-associated mRNA transcripts (e.g., Nav1.8, P2xr3, and Runx-1) were downregulated, resulting in lower levels of protein and functional expression. qRT-PCR analysis also showed lowered levels of expression of nociceptor-specific pre-mRNA transcripts. MicroRNA microarray and deep sequencing identified known and novel nociceptor microRNAs in mouse Nav1.8+ sensory neurons that may regulate nociceptor gene expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Nociceptores/metabolismo , Umbral del Dolor/fisiología , Dolor/fisiopatología , Células Receptoras Sensoriales/fisiología , Canales de Sodio/metabolismo , Análisis de Varianza , Animales , Cerebelo/citología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , ARN Helicasas DEAD-box/deficiencia , Modelos Animales de Enfermedad , Endorribonucleasas/deficiencia , Femenino , Adyuvante de Freund/efectos adversos , Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Ratones Noqueados , MicroARNs/fisiología , Canal de Sodio Activado por Voltaje NAV1.8 , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Dolor/inducido químicamente , Dolor/genética , Dimensión del Dolor , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3 , Ribonucleasa III , Canales de Sodio/deficiencia , Canales de Sodio/genética , Médula Espinal/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...